Магнитное хранение данных
- Дата
- Категория: it
Для расширения возможностей хранения информации в большинстве компьютеров, в качестве вспомогательных хранилищ, используются магнитные диски или магнитные ленты. И на диске и на ленте данные записываются и считываются в виде магнитных зарядов. Магнитные ленты компьютера работают так же, как магнитные ленты магнитофона, только подсоединенные к компьютеру.
Во многие компьютеры встроен жесткий, или неподвижный, магнитный диск.
Жесткий диск состоит из нескольких круглых алюминиевых пластинок, каждая из которых покрыта намагниченным материалом и снабжена головкой, считывающей и записывающей данные. Целый набор дисков вращается, и по мере их вращения данные могут быть считаны или записаны на концентрических дорожках на поверхности диска. Получив команду считывать или записывать данные, головка продвигается к указанной дорожке и зависает. Когда под ней проходит нужный сектор вращающегося диска, головка записывает и считывает данные. Клинообразные головки парят над поверхностью диска в потоках магнитного ветра, производимого высокоскоростным вращением диска. Жесткие диски могут иметь от двухсот до тысячи дорожек и содержать от 10 миллионов (10 мегабайт) до 1 биллиона символов.
Магнитное хранение данных
При одном методе хранения (сверху) используется два магнитных импульса на 1 бит, причем притяжение северных полюсов обозначает 1, отталкивание — 0. При другом методе (снизу), если магнитный заряд совпадает с предыдущим, машина узнает 0; если бит отличается от предыдущего, она принимает его за единицу.
Строение жесткого диска
Круглые пластины жесткого диска, смонтированные вокруг одной оси, вращаются со скоростью 3600 оборотов в минуту. Отдельная головка может достигать любого места записывающей поверхности. Хотя рычаг доступа одновременно двигает все головки вдоль дорожек, только одной головке дается команда считывать, записывать или стирать информацию. Вся поверхность диска доступна для головок, и они могут считывать данные постоянно в любом месте диска.
Запись на магнитном диске
Когда магнитная головка записывает данные на магнитный диск, биты соответственно фиксируются на дорожках. На диаграмме сверху, слева направо, показано, как головка записывает единицы, используя направление намагниченности, противоположное направлению намагниченности предыдущего бита. Нули обозначают бит, идентичный предшествующему.
Запись на магнитной ленте
Магнитно-ленточное устройство имеет три магнитные головки — для стирания, считывания и записи — расположенные между подающей и принимающей катушками; записывающая головка на им. слева значительно увеличена. Поскольку в каждый данный момент времени только короткий участок дорожки ленты доступен головке, данные, хранимые на ленте, легко обрабатываются в порядке поступления.
Девятидорожечная головка. Магнитная лента разделяется на девять дорожек, позволяющих записать 8 бит — 1 байт данных -поперек ленты. На девятой дорожке находится контрольный бит. показывающий, что необходимо делать с данными. На 1 дюйме большинства лент помещается 6250 символов.
Магнитные устройства хранения данных
Некоторые устройства, упомянутые выше, могут выполнять функции, как ввода, так и вывода. Магнитные диски, магнитные дискеты и магнитные ленты – примеры подобных устройств. Магнитные диски, дискеты и ленты могут запоминать данные, как выходные из оперативной памяти, а также об использовании в качестве устройства ввода, возвращающие данные в оперативную память.
Данные, записываемые на магнитные диски и магнитные ленты как посредством вывода данных из оперативной памяти, так и с использованием устройств записи данных. Они не являются устройствами ввода, и они не связываются с компьютерной системой. К тому же это оффлайновые записи. Магнитные записывающие носители хранения механизмы ввода данных с клавиатуры на диск, на дискеты и на магнитные ленты.
Устройства ввода данных с клавиатуры на диск используются, в качестве данных пункта наблюдения в многостанционной системы совместной обработки. Они способны корректировать данные перед их записью на магнитный диск и до ввода в основную компьютерную систему.
Система ввода данных с клавиатуры на дискету сохраняет данные на гибкие диски, называемые дискетами. Дискеты недорогой носитель информации, а так же пригоден для многократного использования.
Устройства ввода данных с клавиатуры на магнитную ленту могут запоминать данные на катушки, кассеты и кассетные картриджи. Катушки магнитных лент производятся системами ввода данных с клавиатуры на магнитную ленту и находятся в компьютерно – комбинированном формате для подпоследовательностей данных прямого ввода в компьютер. Однако данные на картриджах и кассетах часто перемещают на носители большей скорости, такие как, например, катушки стандартного размера магнитных лент или дисков для перемещения на компьютер.
Клавишные устройства
Существует широкое разнообразие клавишных устройств, или терминалов доступных для использования во вводе данных напрямую в компьютер.
Терминал дисплея это один из самых популярных типов устройств В/В в нынешнем использовании. Он состоит из печатной машинки, наподобие клавиатуры для ввода и электронно-лучевой трубки для показывания на экране выходных данных. Каждый введенный с клавиатуры символ показывается также на CRT. Когда снабженные клавишами данные удерживают в небольшой памяти, называемой буфером непосредственно в пределах терминала. Данные не отправляются в компьютер, пока оператор не нажмет нужную клавишу на клавиатуре. Это позволяет оператору получить возможность прочитать корректуру или проконтролировать вводимые данные, читая показываемые на дисплее данные. Существует три основных применения VDT: алфавитно-цифровой, графический дисплеи и ввод через световое перо.
Алфавитно-цифровой дисплей. Самое общее использование VDT – показ арифметических данных (символьных данных). Ввиду их относительного показателя быстроты вывода и особенности обеспечивать наблюдателя мгновенным выводом, видеотерминал с замещенным выводом для многих приложений.
Графический дисплей. VDT с графическим дисплеем, способным обеспечить очень мощную и универсальное средство для большинства пользователей. Устройство графического дисплея обеспечивает не только средства показа рисунков высокого разрешения, но так, же способно управлять и изменять графический дисплей. Предприниматель может использовать графический дисплей для представления данных в форме линейчатых графиков, гистограмм или круговых диаграмм. Графический дисплей может быть очень эффективен в информационных системах для менеджеров бизнеса.
Различные виды клавишных устройств, как VDT, телетайпные терминалы и мультикэши в числе клавишных устройств.
Световое перо светочувствительная ручка, наподобие инструмента, который может чувствовать положение на электронно-лучевой трубке, когда кончик ручки фиксируется на экране. Световая трубка устройство ввода. Посредством ощущения позиции на, когда вы ей касаетесь экрана, вы вводите данные в оперативную память. Световое перо обычно используется инженерами для модификации дизайнов.
Телетайпные терминалы. Существуют ситуации, где это желательно иметь напечатанную копию выходных данных с терминала. Если пользователь находит необходимую ему напечатанную копию, решением может быть в этой ситуации телетайпный терминал. У него есть клавиатура для ввода и печатная машинка наподобие принтера для вывода. Эти принтеры являются посимвольными и поэтому медленнее устройств вывода, чем CRT показ.
Мультикэши электронный эквивалент кассового аппарата, однако, они способны захватывать больше данных, чем кассовый аппарат. Большинство мультикэшей – это онлайновые терминалы, подключенные к компьютеру для обработки транзакций, в то время как покупатели делают свои покупки. Значительные свойства большинства нынешних электронных мультикэшей включают: способности ввода обширной информации о ценах, руководствах оператора через возможные транзакции посредством серии мигающих индикаторов или сообщений, обеспечение трансмиссий данными в центральный компьютер и обеспечение обеспечения местного вычисления способностью наподобие ценового увеличения и сбор расчета.
Сканеры
Сканеры обеспечивают способностью прямого ввода данных в компьютерную систему. Главное преимущество этого прямого ввода данных это то, что человеку не приходиться вводить данные. Что обеспечивает наиболее быстрый и наиболее точный ввод данных. Два основных типа сканеров – это оптические сканеры и устройства распознавания магнитных знаков или знаков, написанных магнитными чернилами.
Оптические сканеры это устройства ввода, которые могут «считывать» данные, написанные на бумаге. Сканирующие технологии использованы с использованием светового источника и светочувствительного датчика; поэтому они и называются оптическими устройствами. Сканированные данные могут быть напечатаны или рукописными символами, штрих-код как пометка карандашом или штрих-код как полосы. Распространенные устройства оптического сканера называется оптическим считывателем символов, оптические устройства считывания меток и устройства считывания меток.
Оптический считыватель символов устройство ввода данных, с использованием оптических сканирующих механизмов, которые могут направлять или сканировать буквенные и числовые символы, напечатанные на бумаге. Если данные напечатаны, тогда они должны быть напечатаны с использованием особого печатного шрифта, называемого шрифтом оптического распознания символов. Примеры использования устройств ОКР включает сканеры, использованные Почтовой службой, помогающей в сортировке объемистой почты и как черновой ввод для систем обработки слов.
Вывод:Устройства ввода данных в персональный компьютер позволяют нам вводить в компьютер определенные значения и символы, а принтеры позволяют нам распечатывать документы на бумагу.
Заключение
В ходе учебной практики было выполнено:
– Изучены основные устройства ввода данных в персональный компьютер;
– Изучено устройство — принтер ;
Полученные навыки были закреплены в процессе создании учебных проектов:
– Помощь при сканировании документов в Персональный компьютер;
– Распечатка документов;
Учебная практика создала условия для получения навыков по выбранной специальности, закрепления знаний, полученных во время обучения на первом курсе данной специальности.
Библиографический список:
1. А. В. Могилев, Н. И. Пак, Е. К. Хеннер. Информатика. М., 2000.
2. А. Я. Савельев. Основы информатики. М., 2001.
3. Статьи журналов Hard&Soft за 2001-2003 г. г.
4. Статьи журналов Compas за 2007г.
5. Леонтьев В. П. ПК: универсальный справочник пользователя Москва 2000.
6. Каталог «Весь компьютерный мир» декабрь 1995..
7. Журнал «Домашний компьютер» август 2001г.
Читайте также:
Рекомендуемые страницы:
Поиск по сайту
Устройства хранения информации
Запоминающее устройство — носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.
Устройства хранения информации делятся на 2 вида:
К внешним устройствам относятся магнитные диски, CD,DVD,BD,cтримеры,жесткий диск(винчестер),а также флэш-карта. Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти.
К внутренним устройствам относятся оперативная память, кэш-память, CMOS-память, BIOS. Главным достоинством является скорость обработки информации. Но в то же время устройства внутренней памяти довольно дорогостоящи.
НГМД (накопитель на гибких магнитных дисках)
Использование гибких дисков уходит в прошлое. Бывают двух типов и обеспечивают хранение информации на дискетах одного из двух форматов: 5,25′ или 3,5′. Дискеты формата 5,25′ в настоящее время практически не встречаются (максимальная емкость 1,2 Мб). Для дискет формата 3,5′ максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб. Гибкие магнитные диски помещаются в пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью. Все дискеты перед употреблением форматируются – на них наносится служебная информация, обе поверхности дискеты разбиваются на концентрические окружности – дорожки, которые в свою очередь делятся на сектора. Одноименные сектора обеих поверхностей образуют кластеры. Магнитные головки примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки. Перемещение головок по радиусу с помощью шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под управлением операционной системы. Однако в особых случаях можно организовать запись/чтение и в обход операционной системы, используя напрямую функции BIOS. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации.
НЖМД (накопитель на жестких магнитных дисках)
Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного ПК. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью.Основные принципы работы жесткого диска мало изменились со дня его создания.Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли. Кроме того, корпус экранирует накопитель от электромагнитных помех.
Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже — из
керамики или стекла, покрытую тонким ферромагнитным слоем. Магнитные головки считывают и записывают информацию на диски. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и «запомнить». Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.
Основные параметры жесткого диска:
Емкость – винчестер имеет объем от 40 Гб до 200 Гб.
Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.
Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.
Стримеры
лассическим способом резервного копирования является применение стримеров – устройств
записи на магнитную ленту. Однако возможности этой технологии, как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок. Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше.
Flash-карта
Устройства, выполненные на одной микросхеме (кристалле) и не имеющие подвижных частей, основаны на кристаллах электрически перепрограммируемой флэш-памяти. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались. Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении.
Multimedia Card (MMC) и Secure Digital (SD) – сходит со сцены из-за ограниченной емкости (64 Мб и 256 Мб соответственно) и низкой скорости работы.
SmartMedia – основной формат для карт широкого применения (от банковских и проездных в метро до удостоверений личности). Тонкие пластинки весом 2 грамма имеют открыто расположенные контакты, но значительная для таких габаритов емкость (до 128 Мбайт) и скорость передачи данных (до 600 Кбайт/с) обусловили их проникновение в сферу цифровой фотографии и носимых МРЗ-устройств.
Memory Stick – “эксклюзивный” формат фирмы Sony, практически не используется другими компаниями. Максимальная емкость – 256 Мбайт, скорость передачи данных доходит до 410 Кбайт/с, цены сравнительно высокие.
CompactFlash (CF) – самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения – цифровая фотография. По емкости (до 3 Гбайт) сегодняшние CF-карты не уступают IBM Microdrive, однако отстают по скорости обмена данными (около 2 Мбайт/с).
USB Flash Drive – последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок. Основные параметры (емкость и скорость работы) полностью совпадают с CompactFlash, поскольку чипы самой памяти остались прежними. Может служить не только “переносчиком” файлов, но и работать как обычный накопитель – с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы. Низкое среднее время доступа к данным на Flash-диске – менее 2,5 мс. Вероятно, накопители класса USB Flash Drive, особенно с интерфейсом USB 2.0, в перспективе смогут полностью заменить собой обычные дискеты и частично – перезаписываемые компакт-диски, носители Iomega ZIP и им подобные.
PC Card (PCMCIA ATA) – основной тип флэш-памяти для компактных компьютеров. В настоящее время существует четыре формата карточек PC Card: Type I, Type II, Type III и CardBus, различающиеся размерами, разъемами и рабочим напряжением. Для PC Card возможна обратная совместимость по разъемам “сверху вниз”. Емкость PC Card достигает 4 Гб, скорость – 20 Мб/с при обмене данными с жестким диском.
Почему будущее хранения данных всё ещё за магнитной плёнкой / Habr
Жёсткие диски приближаются к пределам своего развития, а плёнка становится лишь лучше со временем.Финансовые институты обязывают компании хранить всё больше данных и всё более долгий период времени. Количество данных, которое приходится хранить, каждый год вырастает на 30–40 процентов по сравнению с предыдущим годом. Вместительность жёстких дисков тоже растёт, но со вдвое меньшим темпом. К счастью, вся эта информация не требует мгновенного доступа, поэтому плёнка — отличное решение проблемы.
Вообще, много информации в мире хранится именно на ленте: научные данные о физике частиц, астрономические данные, национальные архивы, культурное наследие, большинство кинофильмов, банковские данные и так далее. Существуют профессионалы (специалисты по материалам, инженеры, физики), чья работа — совершенствовать способы хранения данных на плёнке.
За десятилетия плёнка развивалась не меньше, чем жёсткие диски или транзисторы. Первая плёнка для хранения информации в цифровом виде — модель 726 производства IBM — могла хранить 1,1 МБ на катушке. Сегодня 1 катушка способна хранить 15 терабайтов данных, а одно роботизированное плёночное хранилище — 278 петабайтов.
Конечно, плёнка не позволяет так же быстро считывать информацию, как жёсткие диски или полупроводниковая память. Но у неё есть свои преимущества. Плёнка энергоэффективна: если данные уже записаны, плёнке не требуется питания для их хранения. Плёнка надёжна: вероятность ошибок при записи или чтении на 4-5 порядков ниже, чем у жёстких дисков. Плёнка безопасна: в отличие от дисков, которые, как правило, подключены к компьютеру постоянно, картриджи с катушками могут храниться без подключения к устройствам, что защищает данные на плёнке от чтения или модификации злоумышленниками или от ошибок из-за человеческого фактора.
В 2011 году из-за ошибки в ПО на серверах Google случайно удалил почту в 40000 ящиках. Удаление произошло на всех резервных копиях на жёстких дисках, потому что ошибочная операция цепочкой прошла и по ним, но письма удалось восстановить с плёнки. После этого случая впервые стало известно, что Google делает резервные копии на плёнке, а затем и Microsoft подтвердили, что в их облачном сервисе Azure используют плёночное оборудование IBM.
Магнитная плёнка впервые использована для записи данных компьютера Univac в 1951 году.
Хранить данные на плёнке в 6 раз дешевле, чем на жёстких дисках, поэтому она используется повсеместно, если речь идёт о больших объёмах информации. Так как плёнка практически исчезла с потребительского рынка, большинство и не знает, как стремительно она развивается и будет развиваться в обозримом будущем.
Плёнка выжила, потому что она ничтожно дешёвая, и дешевеет со временем. Можно предположить, что, раз уплотнение записи данных на жёстких дисках сходит на нет, то то же самое применимо и к плёнке, потому что для неё используется примерно та же технология (только более старая). Это как «закон Мура», но для магнитной плёнки. Но это не так: с годами темпы уплотнения записи на плёнке не спадают, а сохраняются в районе 33% в год. То есть, удвоение объёма данных, записанных на плёнке, происходит приблизительно каждые 2-3 года.
Физически технология записи на жёсткие диски и плёнки одна и та же: данные записываются на намагниченной поверхности узкими дорожками, на которых происходит переключение полярности. Информация записывается последовательностью битов. С момента появления плёнки и жёстких дисков в 50-х, производители того и другого стремятся к большей плотности, скорости и дешевизне, поэтому стоимость хранения в долларах на гигабайт снизилась на порядки. Именно из-за того, что производство стараются удешевить, растёт плотность записи на квадратный миллиметр.
Чем больше финансирования на исследования и разработку получают компании, производящие магнитные носители, очевидно, тем больше эти носители прогрессируют. Сейчас на самых продвинутых жёстких дисках можно записать в 100 раз больше информации, чем на такой же площади плёнки. Но так как самой этой площади на плёнке в катушке намного больше, на ней помещается до 15 ТБ данных, что больше, чем на любых существующих на рынке дисках. При этом габариты картриджа с катушкой плёнки и жёсткого диска примерно одинаковые.
Снаружи и внутри: Современный картридж содержит одну катушку. После установки картриджа плёнка автоматически подаётся на считывающее или записывающее устройство.
Кроме вместимости у плёнки и жёстких дисков есть ещё отличие: скорость доступа к данным. В катушках находятся магнитные ленты длиною в несколько сотен метров, среднее время доступа к данным — от 50 до 60 секунд. У жёстких дисков это время — от 5 до 10 миллисекунд. Однако, скорость записи на плёнку при этом вдвое выше.
За последние годы темпы уплотнения записи на дисках уменьшились с 40% до 15% в год. Причина — фундаментальная физика. Чтобы записать больше данных на прежней площади, нужно уменьшить область для записи каждого бита. Как следствие, это уменьшает силу сигнала во время чтения данных. Если слишком уменьшить силу сигнала, то он может смешаться с магнитным шумом от соседних магнитных гранул, покрывающих поверхность диска. Можно уменьшить и шум, сделав сами гранулы меньше. Но тогда гранула будет уже настолько мала, что едва ли сможет стабильно удерживать своё состояние намагниченности. Самый малый размер гранул, пригодный для магнитной записи, уже достигнут, в профессиональной области его называют супермагнетическим пределом.
До недавнего времени достижение этого предела оставалось для потребителей незаметным, потому что производители добавляли внутрь контейнера дополнительные диски и головки для записи и чтения, делая жёсткий диск прежнего размера, но большего объёма. Однако теперь и больше дисков внутрь контейнера уже сложно добавить, сохранив его размеры, поэтому предел становится заметнее.
Есть альтернативные способы записи на магнитную поверхность, которые теоретически могут преодолеть супермагнетический предел. Это запись, сопровождающаяся нагреванием гранул, и микроволновая запись. Но это сложно в инженерном и финансовом аспекте. Компания Western Digital анонсировала жёсткий диск с микроволновым способом записи, который она собирается выпустить в 2019 году. Ожидается, что такая инновация позволит сохранить темпы уплотнения записи в районе 15% в год.
В то же время хранение на плёнке ещё далеко от достижения супермагнетического предела, поэтому плёнка десятилетиями может эволюционировать, не упираясь в свой «закон Мура» и ограничения фундаментальной физики.
У плёнки хитрая природа. Смена картриджей с катушками в записывающем оборудовании, тонкий полимерный материал, параллельная запись на 32 дорожках — всё это создаёт сложности в дизайне этого носителя информации.
В 2015 году компания IBM в сотрудничестве с корпорацией FujiFilm обнаружила, что при записи с использованием ультрамаленьких барриево-ферритных магнитных частиц, расположенных перпендикулярно поверхности плёнки, можно достичь в 12 раз большей плотности, чем позволяют другие технологии. А в 2017 году в сотрудничестве с Sony удалось достичь плотности, в 20 раз превышающей самые современные ленточные накопители. В перспективе кинокомпаниям, например, это позволит хранить весь материал высокобюджетного фильма всего на одной катушке вместо дюжины.
Наводнение данными: современные плёночные хранилища содержат сотни петабайтов данных, а модель 726 от IBM, представленная в 1952 году, могла сохранить лишь пару мегабайтов.
Чтобы добиться такого прогресса, инженеры приспособили головки для чтения и записи двигаться по крайне узким дорожкам на плёнке — около 100 нанометров шириной. Кроме этого, пришлось сделать считывающие головки более узкими — около 50 нанометров шириной. При считывании уровень сигнала к шуму тоже уменьшился, поэтому пришлось манипулировать размером и положением намагниченных гранул и гладкостью поверхности плёнки, а также усовершенствовать процесс обработки сигнала и ошибок чтения.
Для того, чтобы обеспечить надёжность записанных данных в течение десятилетий, инженеры разработали новые записывающие головки, производящие гораздо более сильные магнитные поля, чем обычные.
Совместив все эти разработки, инженерам IBM удалось достичь плотности записи в 818000 битов на линейный дюйм (такое измерение плотности сложилось исторически). Новая технология позволила уместить на одном дюйме 246200 дорожек записи и предоставила место для 201 гигабита на квадратный дюйм. Картридж с 1140 метрами плёнки на катушке способен сохранить 330 терабайтов информации. Это можно сравнить с целой телегой жёстких дисков.
Консорциум индустрии хранения данных, куда входят HP, IBM, Oracle, Quantum и несколько исследовательских групп, в 2015 году выпустили документ о планах развития хранения данных на плёнке. По прогнозу консорциума к 2025 году плотность записи на квадратный дюйм вырастет до 91 гигабайта, а к 2028 году — до 200 гигабайтов.
Авторы документа профессионально заинтересованы в подобном оптимистичном прогнозе, но он вполне реалистичен. В лаборатории IBM подтверждают, что 200 гигибайтов на квадратный дюйм — выполнимая цель на ближайшее десятилетие.
Плёнка — носитель информации, которого «закон Мура» прижмёт в последнюю очередь. Поэтому выгода от хранения данных на плёнке по сравнению с жёсткими дисками будет увеличиваться в грядущие годы.
Автор статьи Марк Ланц работает управляющим в лаборатории IBM в Цюрихе и занимается решением проблем с хранением данных на плёнке.
Статья изначально была издана в печатном виде под заголовком “Tape Storage Mounts a Comeback”, а затем опубликована на сайте консорциума IEEE. В переводе используются фото из оригинальной статьи.
Обзор устройств и технологий хранения данных на магнитной ленте. Что лучше?
Бурный рост критически важных и ответственных приложений с одной стороны и увеличение объемов данных в сегодняшних условиях требуют особого, более внимательного отношения к системам хранения данных, так как информация имеет свою (и порой достаточно высокую) цену и любая потеря данных может обернуться ощутимыми финансовыми потерями. Вот почему подсистемы хранения данных приобретают все большее и большее значение.
Традиционно системы хранения можно разделить на следующие три класса.
- Быстрые системы с произвольным доступом. Это «жесткие диски» и RAID системы. Имеют небольшое время доступа и самую высокую удельную стоимость хранения.
- Относительно медленные системы с последовательным доступом. Это отдельно стоящие приводы магнитных лент, библиотеки магнитных лент и достаточно редко используемые RAIT системы. Обладают наибольшим временем доступа, наибольшей емкостью и наименьшей удельной стоимостью хранения данных. Используются также в системах иерархического хранения данных.
- Системы с произвольным доступом, которые по емкости, стоимости, скорости занимают промежуточное положение. Это системы, построенные на базе магнитооптики, DVD и CD (R, RW) технологий. В настоящее время используются для организации небольших архивов и промежуточного хранения, в системах иерархического хранения данных.
Существует еще один класс устройств — это твердотельные диски. Используются для организации буферов данных. Но из-за высокой стоимости их применение ограничено.
В данной статье пойдет речь технологиях и системах хранения данных на магнитных лентах. Традиционно магнитные ленты были и остаются наименее дорогим и достаточно надежным (сохранность записи более 30 лет) носителем для организации архивов и резервного копирования данных.
Чтобы проще было разобраться в разнообразии представленных на рынке устройств — сначала немного теории. Несмотря на то, что приводов магнитных лент и картриджей разной конструкции достаточно много, базовых технологий, используемых во всех устройствах, всего две. Это линейная запись (запись с неподвижной магнитной головкой) и наклонно-строчная запись. Оба метода пришли из аналоговой магнитной записи.
Итак, начнем с линейной магнитной записи, так как появилась она раньше. Аналоговые магнитофоны появились достаточно давно, а для записи данных эта технология использовалась уже в ЭВМ ЕС и СМ.
Суть состоит в том, что используется достаточно широкая лента с большим числом расположенных по всей длине ленты параллельных дорожек и многоканальная магнитная головка. Лента протягивается лентопротяжным механизмом мимо головки. При этом считывается часть (группа) дорожек. При достижении окончания ленты головка перепозиционируется на следующую группу дорожек, лентопротяжный механизм реверсирует движение ленты (лента движется обратно и записываются/считываются другие дорожки). Этот процесс повторяется, пока не будут считаны или записаны все дорожки. Такой метод записи называют серпантиновым.
Линейная система записи имеет свои характерные особенности. Чтобы обеспечить необходимую плотность записи лента должна двигаться мимо магнитной головки со скоростью порядка 160 дюймов/с (порядка 70 см/с). Чем быстрее достигается рабочая скорость движения ленты , тем меньше задержек при неизбежном старт-стопном движении ленты. Поэтому, чем более быстродействующий лентопротяжный механизм , тем больше механическая нагрузка на ленту и применение современных тонких лент AME в этом случае недопустимо.
Еще одна особенность — это обеспечение оптимального взаимного положения магнитной дорожки и рабочего зазора магнитной головки. Дело в том, что при движении ленты неизбежна некоторая девиация положения магнитной дорожки по высоте. Причина в неизбежном перемещении ленты в вертикальной плоскости при движении из-за некоторого люфта направляющих стоек или роликов и не абсолютная параллельность краев самой ленты. Это не критично при невысоких плотностях цифровой записи и для традиционной аналоговой записи, где ширина дорожки несколько больше ширины магнитного зазора и разница эта не меньше возможной девиации положения ленты по вертикали при движении по лентопротяжному тракту. Однако для удовлетворения современных потребностей требуется дальнейшее увеличение емкости картриджа. Так как нельзя просто намотать больше ленты (объем картриджа ограничен) и нельзя бесконечно уменьшать толщину ленты — остается только увеличение количества дорожек (плотность расположения) и использование более прогрессивных методов магнитной записи (RLL, PRML). Поэтому очевидно, что для увеличения количества дорожек на ленте требуется специальная система слежения и коррекция положения головки.
Основные изготовители устройств с линейной записью — это Quantum Corp. и Tandberg Data ASA. Оба имени достаточно известны, Quantum занимается производством жестких дисков и приводов магнитных лент DLT. Tandberg Data ASA выпускает устройства DLT, а также имеет фирменную технологию SLR на базе четвертьдюймовых лент (QIC). Технические характеристики приводов DLT и SLR перечислены в сводной таблице.
Особенности DLT
Используется лента шириной 0,5 дюйма и однокатушечный картридж (приемный барабан несъемный и находится в самом устройстве). Лента закреплена одним концом в подающем барабане в картридже, а на другом конце находится специальная петля, лидер, за которую ЛПМ (лентопротяжный механизм) вытаскивает ленту из картриджа и заправляет в приемный барабан. Таким образом, более полно используется объем картриджа (весь объем заполнен лентой), но сам привод магнитных лент получается несколько больших размеров. Технология DLT в настоящее время наиболее широко используется в системах среднего и более высокого уровня. На рынке представлены DLT4000, 7000, 8000. Поставки SuperDLT компанией Tandberg Data по дистрибьюторским каналам начались с апреля 2001.
Представленные на рынке устройства DLT4000, 7000, 8000 принципиальных отличий друг от друга не имеют, все отличия, скорее, количественные. Устройства же SuperDLT принадлежат уже к новому поколению, где используется другая, более совершенная лента, другие магнитные гоовки (CMR, кластер магниторезистивных головок), оптическая система позиционирования дорожек и др. Правда, в устройствах SDLT не удалось получить совместимость со старыми картриджами DLT. Объясняется это тем, что новые головки не могут работать со старыми плотностями записи и старыми плотностями расположения дорожек. Поэтому для обеспечения совместимости требуется установка дополнительного блока магнитных головок, что приведет к существенному изменению и усложнению конструкции лентопротяжного механизма.
Еще следует упомянуть о поставляемом Tandberg Data приводе DLT1. Это устройство по емкости соответствует DLT8000, но производительность в два раза меньше и совместимо оно по чтению только с DLT4000. Однако, это компенсируется чрезвычайно низкой ценой, соизмеримой с устройствами более низкого класса (DDS-4).
Особенности SLR
Приводы магнитных лент SLR производятся Tandberg Data ASA и имеют следующие особенности.
- Используется лета шириной четверть дюйма. Полностью закрытый картридж с массивным металлическим основанием имеет двухкатушечную конструкцию (приемный и подающий барабаны находятся в внутри картриджа). Оба барабана приводятся в движение специальным ремнем, размещенным внутри картриджа. Картридж имеет лишь небольшое окошко для контакта головки чтения/записи с лентой и ролик, который сообщается с приводным ремнем внутри картриджа и с тонвалом привода. Таким образом, лентопротяжный механизм имеет минимальное количество движущихся частей (головка и тонвал), а, следовательно надежность такой конструкции максимальна.
- Головка. Многоканальная головка закреплена не жестко, а подвешена при помощи магнитной катушки наподобие диффузора громкоговорителя. На ленте при изготовлении нанесены специальные синхро-дорожки, которые всегда считываются при движении ленты (как при чтении, так и при записи), а сервосистема на основе считанного синхросигнала постоянно корректирует положение магнитной головки по высоте. Кроме того, головка чтения-записи имеет дополнительный рабочий зазор, который позволяет считывать только что сделанную запись. Применительно к аналоговой записи это называют сквозным каналом записи — воспроизведения. Использование такой сервосистемы позволяет существенно увеличить количество дорожек на ленте, не прибегая ни к каким другим приемам. Приводы SLR имеют несколько меньшую стоимость, чем DLT и младшие модели могут быть использованы в системах начального уровня, там где традиционно господствуют устройства DDS.
Особенно в этом отношении интересно новое устройство SLR7 от Tandberg Data. Техические данные приведены в общей таблице, а стоимость этого устройства ниже, чем DDS4.
Следует остановиться еще на одном формате. Это открытый формат LTO (Linear Tape Open format), результат объединения усилий IBM, HP и Seagate, лицензии на который уже получены многими изготовителями как магнитных лент, так и устройств. Технология: серпантиновая запись на ленту шириной 0,5 дюйма. Предполагается два типа устройств.
- Ориентированнные на минимальное время доступа и максимальную скорость Accelis с двухкатушечным катриджем. Причем для получения минимального времени доступа исходное положение ленты в катридже — не начало (как у других устройств) , а середина ленты.
- Ориентированные на максимальную емкость устройства Ultrium. Конструкция картриджа и привода напоминает DLT. Емкость картриджа для устройств первого поколения составляет 100 Гбайт, а для устройств третьего поколения через 2-3 года предполагается кмкость порядка 800 GB.
Поставки Ultrium первого поколения начались в 2001 году. Это устройство доступно в настоящее время по крайней мере от IBM и HP, автоматизированные библиотеки доступны от Exabute, HP и др. Картриджи Ultrium доступны также от HP и Exabyte.
Опыт пользования устройствами Ultrium пока еще не накоплен, отзывы пользователей в Европе пока еще противоречивы.
Другой метод магнитной записи — это наклонно-строчная магнитная запись. В середине 50-х годов фирмой Ampex был начат выпуск первых (естественно, аналоговых) видеомагитофонов с наклонно-сторочной записью. Суть метода состоит в том, что лента протягивается с небольшой скоростью (несколько сантиметров в секунду) мимо вращающегося в высокой скоростью цилиндра, на котором закреплены головки чтения-записи. За счет вращения блока головок получается высокая относительная скорость между лентой и головкой. Преимущества этого метода следующие. Так как абсолютная скорость движения ленты невелика, процессы старта и останова занимают меньше времени и оказывают меньшие механические нагрузки на ленту. Следовательно, можно использовать более тонкие ленты (например, новые более тонкие металлонапыленные ленты AME). Кроме того, при наклонно-строчной записи плотность расположения дорожек (измеряется в количестве дорожек на 1 дюйм) в несколько раз выше, чем при линейной записи. Это является результатом того, что длина одной магнитной дорожки сравнительно невелика, с одной стороны, и применения специального механизма подстройки положения вращающегося барабана с магнитными головками с другой стороны, а также использованием более совершенных носителей.
Название устройства | Плотность расположения дорожек на носителе (колич. на 1 дюйм ширины) |
---|---|
DLT7000 | 416 |
SuperDLT1 | 896 |
TR-5 | 343 |
Mammoth | 2209 |
DDS-3 | 2806 |
Конечно, помимо преимуществ у наклонно-строчной записи есть и недостатки. Это, прежде всего, ожидаемый более быстрый износ как ленты, так и головок. На самом деле, этого не происходит, так как при вращении барабана между рабочей поверхностью ленты и головкой создается некоторая воздушная прослойка, существенно снижающая трение ленты о головку чтения/записи. С другой стороны, современные магнитные ленты с металлонапылением имеют специальное углеродное покрытие, обладающее высокой прочностью и практически нулевым коэффициентом трения. Кроме того, на лентах AME есть еще поверхностный слой сухой смазки. Поэтому, к примеру, механизмы Mammoth, Mammoth-2 не уступают и даже несколько превосходят по долговечности механизмы DLT.
В настоящее время на рынке представлено 2 основных класса устройств, где реализована технология наклонно-строчной записи. Это устройства, использующие картриджи с лентой шириной 4 мм и устройства, работающие с лентой 8 мм. Есть еще класс устройств на базе механизма Betacam фирмы Sony (дальнейшее развитие формата Betamax, также предложенного фирмой Sony) и использующие кассеты типа Betacam. Это библиотеки для хранения видеоархивов, емкость которых измеряется десятками петабайт.
4-миллиметровые устройства
Это технология DAT предложенная в свое время фирмой Sony для цифровой записи звука. Приводы магнитных 4-мм лент подразделяются на поколения: DDS-1, DDS-2, DDS-4 и DDS-4. Основной поставщик 4-мм устройств — это фирма Sony.
8-миллиметровые устройства
Технология аналоговой наклонно-строчной, а впоследствии и цифровой записи на магнитную ленту шириной 8 мм была предложена в 80-х годах, опять же, фирмой Sony. Однако, впервые эта технология была адаптирована и оптимизирована для записи цифровых данных фирмой Exabyte. На рынке представлены 8-мм устройства Exabyte (Eliant, Mammoth, Mammoth-2), Ecrix (VXA) и Sony (AIT, AIT-2). Технические данные всех упомянутых устройств указаны в сводной таблице. Упомянутые 8-мм устройства имеют достаточно много общих черт, но есть и некоторые отличия.*
Лентопротяжный механизм. У Sony в основе лежит ЛПМ, аналогичный используемым в камкодерах, где линейное движение осуществляется при помощи узла тонвал-прижимной ролик. Это очень ответственный узел, в результате малейшего отклонение положения тонвала от нормы лента начинает смещаться вверх или вниз, что, как правило, приводит к механическому повреждению носителя. В ЛПМ, разработанном и используемом Exabyte такого узла нет и линейное движение ленты осуществляется только за счет приемного и подающего барабана и несколько упрощен тракт движения ленты. В результате увеличилась надежность механизма, уменьшился износ ленты и появилась возможность использовать более тонкие и «скользкие» улучшенные металонапыленные ленты AME.
- Магнитные носители. За счет особенностей конструкции ЛПМ Exabyte используются более совершенные магнитные ленты, чем в других устройствах.
- Производительность (скорость чтения-записи). Обусловлено конструкцией блока вращающихся головок. На сегодняшний день устройство Mammoth-2 превосходит все остальные сравниваемые накопители.
- Фирменные особенности. Приводы Exabyte имеют патентованную систему автоматической чистки тракта движения ленты SmartClean, что делает ненужным применение чистящих картриджей, а у Sony кроме автоматической системы очистки головок (специальный чистящий картридж тоже не нужен) есть фирменная технология (MIC, Memory In Cassette) ускоренного чтения каталогов картриджей за счет размещения твердотельной памяти прямо в картридже. Считывание этой памяти происходит практически мгновенно. Благодаря этому значительно снижается время доступа к данным на картридже. Если по каким либо причинам эта память выходит из строя (статические заряды, к примеру), то считывание каталога происходит обычным образом.
Теперь, собственно сравнение существующих технологий. Само разнообразие представленных на рынке устройств говорит о том что идеального привода, подходящего для всех случаев в природе не существует. Для оценки различных технологий используются определенные критерии. Это линейная плотность записи, эффективность формата, плотность расположения дорожек.
Линейная плотность записи — количество информации, записываемой на единице длины магнитной дорожки, измеряется Кб/дюйм
Привод магнитных лент | Линейная плотность записи |
---|---|
DLT7000 | 86 |
Super DLT 1* | 133 |
TR-5 | 106 |
Mammoth | 78 |
DDS-3 | 122 |
Максимальную линейную плотность записи имеют устройства Super DLT, DDS и Travan. У DLT и Mammoth есть некоторый запас для развития.
* Поставки Super DLT первого поколения OEM и в дистрибьюторские каналы начались в начале 2001 года.
Эффективность формата. Это соотношение между общим числом бит, записанных на ленту и числом битов данных. Две эти величины не совпадают, так как на ленту помимо самих данных записываются корректирующие коды, биты четности и другая служебная информация. Измеряется в процентах. Оптимальной считается эффективность 75%.
Привод магнитных лент | Эффективность формата |
---|---|
DLT7000 | 74% |
TR-5 | 76% |
Mammoth | 58% |
DDS-3 | 59% |
DLT и Travan обладают оптимальной и практически предельной эффективностью формата, 8-мм и 4-мм устройства еще имеют некоторый запас для развития. Объясняется это тем, что наклонно-строчная запись более молодая и не до конца оптимизирована для записи цифровых данных, в то время как технология линейной записи прошла несколько более длинный путь развития и лучше оптимизирована для цифровых данных.
Плотность расположения дорожек была рассмотрена несколько ранее. Самая высокая и практически предельная для нынешних носителей и магнитных головок плотность расположения дорожек у устройств DDS. Для устройств с линейной записью есть некоторый запас для дальнейшего увеличения емкости.
Видно, что каждая технология имеет свои достоинства и недостатки. К достоинствам DLT технологии, безусловно, можно отнести огромный парк работающих устройств и библиотек, а также совместимость между разными моделями DLT. Это делает возможным свободный обмен носителями между многими пользователями. Но, с другой стороны, необходимость поддерживать совместимость с более ранними моделями сдерживает развитие формата DLT в сторону увеличения емкости и скорости.
Наклонно-строчная запись появилась позже, чем линейная. Поэтому с самого начала в основе были заложены более прогрессивные технологические решения. В результате те же объемы записываются на гораздо меньшей площади поверхности ленты. Преимущества устройств, построенных на базе наклонно-строчной записи в том, что сами устройства компактнее, картриджи меньше, используется более совершенная магнитная лента, позволяющая хранить больше данных более длительное время.
Привод магнитных лент Mammoth-2 является наиболее быстрым в своем классе (и дорогим) среди всех представленных на рынке устройств, да и емкость картриджа Mammoth-2 на сегодняшний день выше, чем у любого другого устройства в этом классе. Правда, по емкости устройство Mammoth-2 уступает SDLT и Ultrium, но эти два устройства принадлежат к следующему поколению и сравнивать их с Mammoth-2 было бы не совсем корректно.
Бесплатно ничего не бывает. Поэтому за все эти достоинства приходится платить совместимостью. Устройства нового поколения обычно не совместимы со старым. Например, при переходе с Eliant 820 на Mammoth старые картриджи записывать нельзя, это обусловлено тем, что в для Mammoth используется магнитная лента нового поколения AME c другими параметрами записи. Кроме того, обмен картриджами даже между похожими устройствами (к примеру, между Mammoth, AIT или VXA) тоже невозможен из за различия форматов. С SDLT и Ultrium ситуация точно такая же.
Если говорить о более дешевых стандартизованных приводах DDS, то перенос картриджей даже одного класса (DDS -2, -3, -4) тоже не всегда возможен. Если говорить о долговременности хранения, то на первом месте будут устройства, работающие с наиболее совершенными на сегодняшний день лентами AME. Если прибавить к этому скорость и емкость, то безусловно чемпионом будет привод магнитных лент Mammoth-2. Превосходство Mammoth-2 над всеми остальными устройствами подтверждено многочисленными тестами, проводящимися разными независимыми экспертами. По своим техническим данным приводы магнитных лент уступают только SuperDLT и LTO Ultrium, но Mammoth-2 поставляется по дистрибьюторским каналам с начала 2000 года (в США поставки начались несколько раньше), а продажи SuperDLT по дистрибьюторским каналам начались более чем а год позже.
С точки зрения цен — дешевле всего приводы DDS и новые устройства SLR 7 от Tandberg Data. Они используются, в основном, в небольших рабочих станциях и серверах начального уровня.
Подводя итог, можно сказать следующее. Технология DDS (4мм) хороша там, где не требуется высоких скоростей, и не предполагается интенсивное (длительное непрерывное) использование устройства. Привод DDS очень компактен, занимает мало места и без проблем встраивается в любой компьютер. С точки зрения цены стоимость приводов DDS минимальна. Технология DLT и SLR рассчитана на тяжелые условия работы (длительное, практически круглосуточное использование). Устройства SLR имеют высокую скорость и емкость, высокую надежность, а невысокая стоимость позволяет использование в традиционно занимаемых DDS рыночных нишах. Учитывая гораздо лучшую (чем у DDS) переносимость носителей младшие устройства SLR могут быть использованы вместо DDS, а старшие — могут стать разумной альтернативой технологиям Mammoth и DLT, так как практически не уступают по техническим данным, а цена на них несколько ниже.
Технология DLT обладает высокой емкостью, скоростью, используется в системах среднего уровня как в автоматизированных библиотеках, так и в виде автономных устройств. Если уже есть парк катриджей и важна переносимость носителей — DLT будет лучшим выбором.
Устройства DLT1 совместимы по чтению только с DLT4000, но цена соизмерима со старшими DDS, а емкость — соответствует DLT8000.
SDLT, поставки которых начались с апреля 2001 года, в нынешнем своем виде не обладают совместимостью с DLT7000, 8000 и др., что практически ставит их в один ряд с LTO Ultrium. Преимущества SDLT перед Ultium незначительные: несколько больше емкость и чуть-чуть меньше цена.
По спецификациям скорость LTO Ultrium несколько больше, но опыта работы этих устройств в реальных условиях пока недостаточно, чтобы сделать вывод о их преимуществах или недостатках.
8-мм устройства (AIT, а особенно Mammoth) обладают наивысшей скоростью и емкостью (исключая Super DLT и Ultrium, реального опыта работы которых пока еще слишком мало). Если важна скорость, нет «наследственного» парка картриджей и непринципиальна переносимость носителей (с AIT на Mammoth, например) — оптимальным решением будет AIT -2 или Mammoth-2. Эти два устройства не сильно различаются по характеристикам, а стоимость AIT несколько меньше.
Сравнительные тесты работы устройств Mammoth-2, AIT-2, DLT в реальных условиях с разными прикладными программами под разными операционными системами проводились не раз и неизменно лучшие результаты показывал привод Mammoth-2.
Технологии AIT-2 и Mammoth-2 обеспечивает несколько меньшую, чем DLT или LTO удельную стоимость хранения данных. Кроме того, Mammoth-2 от Exabyte — единственный на рынке привод магнитных лент, который может иметь интерфейс Fibre Channel (оптический или «медный», в зависимости от установленного модуля GBIC). Это особенно важно при построении сетей хранения данных (SAN), где используется, в основном, интерфейс FC. В данном случае привод Mammoth-2 подключается к коммутатору или концентратору FC напрямую, без использования не прибавляющих надежности и производительности «мостов» FC — SCSI. Поставки этих приводов уже начались.
И в заключении — сводная таблица технических характеристик различных приводов магнитных лент.
Модель | Емкоcть | Cкорость | Буфер Мб | Надежность MTBF | ||
---|---|---|---|---|---|---|
нормаль- ная | со сжатием | нормаль- ная | со сжатием | |||
Наклонно-строчная запись | ||||||
SONY | ||||||
DDS-2 (4mm) | 4 GB | 8 GB | 0.78 MB/s | 1.56 MB/s | 1MB | 200000 h |
DDS-3 (4mm) | 12 GB | 24 GB | 1.2 MB/s | 2.4 MB/s | 2 MB | 200000 h |
DDS-4 (4mm) | 20 GB | 40 GB | 2.4 MB/s | 4.8 MB/s | 8 MB | 250000 h |
AIT-1 (8mm) | 35 GB | 70 GB | 3 MB/s | 6 MB/s | 4 MB | 300000 h |
AIT-2 (8mm) | 50 GB | 100 GB | 6 MB/s | 12 MB/s | 10 MB | 300000 h |
AIT 130 (AIT-2) | 50 GB | 130GB | 6 MB/s | 15.6 MB/s | 10 MB | 300000 h |
Ecrix | ||||||
VXA-1 (8mm) | 33 GB | 66 GB | 3 MB/s | 6 MB/s | 4 MB | 300000 h |
Exabyte | ||||||
Eliant 820 (8mm) | 7 GB | 14 GB | 1 MB/s | 2 MB/s | 1 MB | 200000 h |
Mammoth (8mm) | 20 GB | 40 GB | 3 MB/s | 6 MB/s | 4 MB | 250000 h |
Mammoth LT (8mm) | 14 GB | 28 GB | 2 MB/s | 4 MB/s | 4 MB | 250000 h |
Mammoth-2 (8mm) | 60 GB | 150 GB | 12 MB/s | 30 MB/s | 32 MB | 300000 h |
Линейная запись | ||||||
Quantum/ Tandberg | ||||||
DLT4000 | 20 GB | 40 GB | 1.5 MB/s | 3 MB/s | 2 MB | 200000 h |
DLT7000 | 35 GB | 70 GB | 5 MB/s | 10 MB/s | 8 MB | 200000 h |
DLT8000 | 40 GB | 80 GB | 6 MB/s | 12 MB/s | 8 MB | 250000 h |
Super DLT | 110 GB | 220 GB | 11 MB/s | 22 MB/s | Нет даных | 250000 h |
IBM | ||||||
LTO Ultrium | 100 GB | 200 GB | 15 MB/s | 30 MB/s | Нет данных | Нет данных |
HP | ||||||
Ultrium 215 | 100 GB | 200 GB | 7.5 MB/s | 15 MB/s | Нет данных | Нет данных |
Ultrium 230 | 100 GB | 200 GB | 15 MB/s | 30 MB/s | Нет данных | Нет данных |
Tandberg | ||||||
DLT1 | 40GB | 80 GB | 3 MB/s | 6 MB/s | нет данных | 200000 h |
SLR40 (QIC) | 20 GB | 40 GB | 3 MB/s | 6 MB/s | 8 MB | 300000 h |
SLR50 (QIC) | 25 GB | 50 GB | 2 MB/s | 4 MB/s | 2 MB | 300000 h |
SLR60 (QIC) | 30 GB | 60 GB | 4 MB/s | 8 MB/s | 8 MB | 300000 h |
SLR100 (QIC) | 50 GB | 100 GB | 5 MB/s | 10 MB/s | 8 MB | 300000 h |
Fujitsu (8» ) | ||||||
M2488 (18/36 track) | 1.2 GB | 2.4 GB | 3 MB/s | 2 MB | 50000 h | |
M8100 (128 tracks) | 10 GB | 13 MB/s | 16 MB | 100000 h |
Устройство хранения данных — это… Что такое Устройство хранения данных?
Electrically Erasable Programmable Read-Only Memory, англ. flash memory), отличающиеся высокой скоростью доступа и возможностью быстрого стирания данныхПо энергозависимости
Энергонезависимая память (англ. nonvolatile storage) — ЗУ, записи в которых не стираются при снятии электропитания. К этому типу памяти относятся все виды ПЗУ и ППЗУ.
Энергозависимая память (англ. volatile storage) — ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относится ОЗУ, кэш-память.
(англ. dynamic storage) — разновидность энергозависимой полупроводниковой памяти, в которой хранимая информация с течением времени разрушается, поэтому для сохранения записей необходимо производить их периодическое восстановление (регенерацию), которое выполняется под управлением специальных внешних схемных элементов.
(англ. static storage) — разновидность энергозависимой полупроводниковой памяти, которой для хранения информации достаточно сохранения питающего напряжения, а регенерация не требуется.
По виду физического носителя и принципа рЕМА
Некоторые виды памяти могут носить сразу два и более «родовых» наименования по принципу работы.
Акустическая память (англ. acoustic storage) — в качестве среды для записи и хранения данных используются замкнутые акустические линии задержки.
Голографическая память (англ. holographic storage) — в качестве среды для записи и хранения используется пространственная графическая информация, отображаемая в виде интерференционных структур.
Емкостная память (англ. capacitor storage) — вид ЗУ, использующий в качестве среды для записи и хранения данных элементы электрической цепи — конденсаторы.
Криогенная память (англ. cryogenic storage) — в качестве среды для записи и хранения данных используются материалы, обладающие сверхпроводимостью.
Лазерная память (англ. laser storage) — вид памяти, в котором запись и считывание данных производятся лучом лазера (CD-R/RW, DVD+R/RW, DVD-RAM).
Магнитная память (англ. magnetic storage) — вид памяти, использующий в качестве среды для записи и хранения данных магнитный материал. Наиболее широко использующимися устройствами реализации магнитной памяти в современных ЭВМ являются накопители на магнитных лентах (НМЛ), магнитных (жестких и гибких) дисках (НЖМД и НГМД). Некоторые разновидности имеют собственные наименования:
- Память на магнитной проволоке (англ. plated wire memory) — на ней строится автоматика авиационных «чёрных ящиков» благодаря высокой сохранности даже повреждённого носителя при аварийных ситуациях.
- Память на магнитной пленке (англ. thin-film memory), наносимой на некоторую подложку, например стеклянную.
- Ферритовая память (англ. core storage) — на ферритовых сердечниках, через которые пропущены тонкие медные проводники.
- Память на цилиндрических магнитных доменах — использует генерацию и управляемое перемещение в неподвижном магнитном материале областей намагниченности (доменов). Имеет последовательный доступ, энергонезависима. Долгое время сохраняла лидерство в плотности хранения информации среди энергонезависимых устройств.
- Магнитооптическая память (англ. magnetooptics storage) — вид памяти, использующий магнитный материал, запись данных на который возможна только при нагреве до температуры Кюри (порядка 1450 °C), осуществляемом в точке записи лучом лазера (объём записи на стандартные 3,5 и 5,25 дюймовые гибкие диски составляет при этом соответственно до 600 Мб и 1,3 Гб, существовали и MO диски меньшего объёма). В 2002 году компания Fujitsu выпустила магнитооптические накопители DynaMO 2300U2 и дискеты к ним (стандартный размер дискет — 3,5 дюйма) ёмкостью 2,3 Гбайт.
- Сегнетоэлектрическая память англ. Ferroelectric RAM) — статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрический эффект («ferroelectric» переводится «сегнетоэлектрик, сегнетоэлектрический», а не «ферромагнетик», как можно подумать). Ячейка памяти представляет собой две токопроводящие обкладки, и плёнку из сегнетоэлектрического материала. В центре сегнетоэлектрического кристалла имеется подвижный атом. Приложение электрического поля заставляет его перемещаться. В случае, если поле «пытается» переместить атом в положение, например, соответствующее логическому нулю, а он в нём уже находится, через сегнетоэлектрический конденсатор проходит меньший заряд, чем в случае переключения ячейки. На измерении проходящего через ячейку заряда и основано считывание. При этом процессе ячейки перезаписываются, и информация теряется(требуется регенерация). Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют — гарантируется до 1010 циклов перезаписи.
Молекулярная память (англ. molecular storage) — вид памяти, использующей технологию атомной тунельной микроскопии, в соответствии с которой запись и считывание данных производится на молекулярном уровне. Носителями информации являются специальные виды плёнок. Головки, считывающие данные, сканируют поверхность плёнки. Их чувствительность позволяет определять наличие или отсутствие в молекулах отдельных атомов, на чём и основан принцип записи-считывания данных. В середине 1999 года эта технология была продемонстрирована компанией Nanochip. В основе архитектуры устройств записи-считывания лежит технология MARE (Molecular Array Read-Write Engine). Достигнуты следующие показатели по плотности упаковки: ~40 Гбит/см² в устройствах чтения/записи и 128 Гбит/см² в устройствах с однократной записью, что считается в 6 раз выше, чем у экспериментальных образцов, которые основаны на классической технологии магнитной записи, и более чем в 25 раз превосходит лучшие её образцы, находящиеся в серийном производстве. Однако текущие (2008 год) достижения в скорости записи и считывания информации таким способом не позволяют говорить о массовом применении этой технологии.
Полупроводниковая память (англ. semiconductor storage) — вид памяти, использующий в качестве средств записи и хранения данных микроэлектронные интегральные схемы (БИС и СБИС). Преимущественное применение этот вид памяти получил в ПЗУ и ОЗУ ЭВМ, поскольку он характеризуется высоким быстродействием. Сравнительно недавно объём памяти, реализуемой на одной твердотельной (полупроводниковой) плате, ограничивался единицами Мбайт. Однако в настоящее время (2008 год) технологические достижения позволяют говорить о массовом использовании памяти в единицы и десятки гигабайт, а также о применении полупроводниковой памяти в качестве внешних носителей.
- Исторически первыми были устройства, в которых состояние сохранялось в триггере — комбинации из двух и более транзисторов или, ранее, электронных ламп.
- В дальнейшем большей плотности хранения при большем быстродействии достигли устройства емкостной памяти.
Фазоинверсная память (англ. Phase Change Rewritable storage, PCR) — разновидность лазерной (дисковой) памяти, использующей свойства некоторых полимерных материалов в точке лазерного нагрева в зависимости от температуры изменять фазовое состояние вещества (в частности кристаллизоваться или плавиться с возвращением в исходное состояние), а вместе с ним — и характеристики отражения. Указанная технология позволяет создавать оптические диски (650 Мб) для многократной перезаписи данных. Разработкой данной технологии занимается ряд компаний, включая Panasonic и Toshiba. Дальнейшее развитие этих принципов привело к развитию DVD, Blue-Ray технологий.
Электростатическая память (англ. electrostatic storage) — вид памяти, в котором носителями данных являются накопленные заряды статического электричества на поверхности диэлектрика.
По назначению, организации памяти и-или доступа
Автономное ЗУ (англ. off-line storage) — вид памяти, не допускающий прямого доступа к ней со стороны центрального процессора: обращение к ней, а также управление ею производится вводом в систему специальных команд и через посредство оперативной памяти.
Адресуемая память (англ. addressed memory) — вид памяти, к которой может непосредственно обращаться центральный процессор.
Ассоциативное ЗУ, АЗУ (англ. associative memory, content-addressable memory, CAM) — вид памяти, в котором адресация осуществляется на основе содержания данных, а не их местоположения, чем обеспечивается ускорение поиска необходимых записей. С указанной целью поиск в ассоциативной памяти производится на основе определения содержания в той или иной её области (ячейке памяти) слова, словосочетания, символа и т. п., являющихся поисковым признаком.
Существуют различные методы реализации АЗУ, в том числе использующие методы поиска основанные на «точном совпадении», «близком совпадении», «маскировании» слова-признака и т. д., а также различные процедуры реализации поиска, например, кэширования с целью производства «наилучшей оценки» истинного адреса, за которой следует проверка содержимого ячейки с вычисленным адресом. Некоторые ассоциативные ЗУ строятся по принципу последовательного, другие — параллельного сравнения признаков поиска (так называемые ортогональные ЗУ). Параллельные ассоциативные ЗУ нашли применение в организации кэш-памяти и виртуальной памяти. Ассоциативные ЗУ, потенциально, являются базой для построения высокоэффективных Лисп-процессоров и систем.
Буферное ЗУ (англ. buffer storage) — вид ЗУ, предназначенный для временного хранения данных при обмене ими между различными устройствами ЭВМ
Виртуальная память (англ. virtual memory):
- Способ организации памяти, в соответствии с которым часть внешней памяти ЭВМ используется для расширения её «внутренней» (основной, оперативной) памяти. Например, содержимое некоторой области, не используемой в данный момент времени «внутренней» памяти, хранится на жёстком диске и возвращается в оперативную память по мере необходимости.
- Область (пространство) памяти, предоставляемая отдельному пользователю или группе пользователей и состоящая из основной и внешней памяти ЭВМ, между которыми организован так называемый постраничный обмен данными. С указанной целью всё адресное пространство делится на страницы памяти. Поиск адресов страниц производится в ассоциативной памяти.
Временная память (англ. temporary storage) — специальное запоминающее устройство или часть оперативной памяти или внешней памяти, резервируемые для хранения промежуточных результатов обработки.
Вспомогательная память (англ. auxiliary storage) — часть памяти ЭВМ, охватывающая внешнюю и наращенную оперативную память.
Вторичная память (англ. secondary storage) — вид памяти, который в отличие от основной памяти имеет большее время доступа, основывается на блочном обмене, характеризуется большим объёмом и служит для разгрузки основной памяти.
Гибкая память (англ. elastic storage) — вид памяти, позволяющей хранить переменное число данных, пересылать (выдавать) их в той же последовательности, в которой принимает, и варьировать скорость вывода.
Дополнительная память (англ. add-in memory) — вид устройства памяти, предназначенного для увеличения объёма основной оперативной или внешней памяти на жёстком магнитном диске (ЖМД), входящих в основной комплект поставки ЭВМ.
Иерархическая память (англ. hierarchical storage) — вид памяти, имеющей иерархическую структуру, на верхнем уровне которой используется сверхоперативное запоминающее устройство, а на нижнем уровне — архивное ЗУ сверхбольшой ёмкости.
Кеш-память (англ. cache memory) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кешируемая память.
Коллективная память, память коллективного доступа (англ. shared memory):
- Память, доступная множеству пользователей, которые могут обращаться к ней одновременно или последовательно.
- Память, связанная одновременно с несколькими процессорами для обеспечения их взаимодействия при совместно решаемых ими задачах и использовании общих для них программных средств.
Корректирующая память (англ. patch memory) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины «relocation table» и «remap table».
Локальная память (англ. local memory) — «внутренняя» память отдельного устройства ЭВМ (процессора, канала и т. п.), предназначенная для хранения управляющих этим устройством команд, а также сведений о состоянии устройства.
Магазинная (стековая) память (англ. pushdown storage) — вид памяти, являющийся аппаратной реализацией магазинного списка — стека, запись и считывание в котором осуществляются через одну и ту же ячейку — вершину стека. Это память абстрактного типа.
Матричная память (англ. matrix storage) — вид памяти, элементы (ячейки) которой имеют такое расположение, что доступ к ним осуществляется по двум или более координатам.
Многоблочная память (англ. multibunk memory) — вид оперативной памяти, организованной из нескольких независимых блоков, допускающих одновременное обращение к ним, что повышает её пропускную способность. Часто употребляется термин «интерлив» (калька с англ. interleave — перемежать) и может встречаться в документации некоторых фирм «многоканальная память» (англ. Multichanel).
Многовходовая память (англ. multiport storage memory) — устройство памяти, допускающее независимое обращение с нескольких направлений (входов), причём обслуживание запросов производится в порядке их приоритета.
Многоуровневая память (англ. multilevel memory) — организация памяти, состоящая из нескольких уровней запоминающих устройств с различными характеристиками и рассматриваемая со стороны пользователей как единое целое. Для многоуровневой памяти характерна страничная организация, обеспечивающая «прозрачность» обмена данными между ЗУ разных уровней.
Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) — память, непосредственно доступная в данный момент времени центральному процессору.
Объектно-ориентированная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
Оверлейная память (англ. overlayable storage) — вид памяти с перекрытием вызываемых в разное время программных модулей.
Память параллельного действия (англ. parallel storage) — вид памяти, в которой все области поиска могут быть доступны одновременно.
Перезагружаемая управляющая память (англ. reloadable control storage) — вид памяти, предназначенный для хранения микропрограмм управления и допускающий многократную смену содержимого — автоматически или под управлением оператора ЭВМ.
Перемещаемая память (англ. data-carrier storage) — вид архивной памяти, в которой данные хранятся на перемещаемом носителе. Непосредственный доступ к ним от ЭВМ отсутствует.
Память последовательного действия (англ. sequential storage) — вид памяти, в которой данные записываются и выбираются последовательно — разряд за разрядом.
Память процессора, процессорная память (англ. processor storage) — память, являющаяся частью процессора и предназначенная для хранения данных, непосредственно участвующих в выполнении операций, реализуемых арифметико-логическим устройством и устройством управления.
Память со встроенной логикой, функциональная память (англ. logic-in-memory) — вид памяти, содержащий встроенные средства логической обработки (преобразования) данных, например их масштабирования, преобразования кодов, наложения полей и др.
Рабочая (промежуточная) память (англ. working (intermediate) storage):
- Часть памяти ЭВМ, предназначенная для размещения временных наборов данных.
- Память для временного хранения данных.
Реальная память (англ. real storage) — вся физическая память ЭВМ, включая основную и внешнюю память, доступная для центрального процессора и предназначенная для размещения программ и данных.
Регистровая память (англ. register storage) — вид памяти, состоящей из регистров общего назначения и регистров с плавающей запятой. Как правило, содержится целиком внутри процессора.
Свободная (доступная) память (англ. free space) — область или пространство памяти ЗУ, которая в данный момент может быть выделена для загрузки программы или записи данных.
Семантическая память (англ. semantic storage) — вид памяти, в которой данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.
Совместно используемая (разделяемая) память (англ. shareable storage) — вид памяти, допускающий одновременное использование его несколькими процессорами.
Память с защитой, защищённое ЗУ (англ. protected storage) — вид памяти, имеющий встроенные средства защиты от несанкционированного доступа к любой из его ячеек.
Память с последовательным доступом (англ. sequential access storage) — вид памяти, в которой последовательность обращённых к ним входных сообщений и выборок данных соответствует последовательности, в которой организованы их записи. Основной метод поиска данных в этом виде памяти — последовательный перебор записей.
Память с прямым доступом, ЗУ с произвольной выборкой (ЗУПВ) (англ. Random Access Memory, RAM) — вид памяти, в котором последовательность обращённых к ним входных сообщений и выборок данных не зависит от последовательности, в которой организованы их записи или их местоположения.
Память с пословной организацией (англ. word-organized memory) — вид памяти, в которой адресация, запись и выборка данных производится не побайтно, а пословно.
Статическая память (англ. static storage) — вид памяти, в котором положение данных и их значение не изменяются в процессе хранения и считывания. Разновидностью этого вида памяти является статическое ЗУПВ [static RAM].
Страничная память (англ. page memory) — память, разбитая на одинаковые области — страницы. Обмен с такой памятью осуществляется страницами.
Управляющая память (англ. control storage) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.
Различные типы памяти обладают разными преимуществами, из-за чего в большинстве современных компьютеров используются сразу несколько типов устройств хранения данных.
Первичная и вторичная память
Первичная память характеризуется наибольшей скоростью доступа. Центральный процессор имеет прямой доступ к устройствам первичной памяти; иногда они даже размещаются на одном и том же кристалле.
В традиционной интерпретации первичная память содержит активно используемые данные (например, программы, работающие в настоящее время, а также данные, обрабатываемые в настоящее время). Обычно бывает высокоскоростная, относительно небольшая, энергозависимая (не всегда). Иногда её называют основной памятью.
Вторичная память также называется периферийной. В ней обычно хранится информация, не используемая в настоящее время. Доступ к такой памяти происходит медленнее, однако объёмы такой памяти могут быть в сотни и тысячи раз больше. В большинстве случаев энергонезависима.
Однако это разделение не всегда выполняется. В качестве основной памяти может использоваться диск с произвольным доступом, являющийся вторичным запоминающим устройством (ЗУ). А вторичной памятью иногда называются отключаемые или извлекаемые ЗУ, например, ленточные накопители.
Во многих КПК оперативная память и пространство размещения программ и данных находится физически в одной памяти, в общем адресном пространстве.
Произвольный и последовательный доступ
ЗУ с произвольным доступом отличаются возможностью передать любые данные в любом порядке. Оперативное запоминающее устройство, ОЗУ и винчестер — примеры такой памяти.
ЗУ с последовательным доступом, напротив, могут передавать данные только в определённой последовательности. Ленточная память и некоторые типы флеш-памяти имеют такой тип доступа.
Блочный и файловый доступ
На винчестере, используются 2 типа доступа. Блочный доступ предполагает, что вся память разделена на блоки одинаковых размеров с произвольным доступом. Файловый доступ использует абстракции — папки с файлами, в которых и хранятся данные. Другой способ адресации — ассоциативная использует алгоритм хеширования для определения адреса.
Типы запоминающих устройств
- Полупроводниковая:
См. также
Литература
- Память // Словарь компьютерных терминов = Dictionary of Personal Computing / Айен Синклер; Пер. с англ. А. Помогайбо — М.: Вече, АСТ, 1996. — С. 177, ISBN 5-7141-0309-2.
Ссылки
Лекция 8 Устройства хранения данных
Лекция 8. Устройства хранения данных
Вопросы:
Общая характеристика устройств хранения данных.
Принципы хранения информации.
Хранение информации на магнитных дисках.
Литература: 1. Гук. М. Аппаратные средства IBM PC. Питер, 2005, с. 510-545.
Общая характеристика устройств хранения данных.
Утройства хранения данных относятся к внешней памяти компьютера — они пзволяют сохранять информацию для последующего ее использования независимо от состояния (включен или выключен) компьютера. В устройствах хранения данных могут быть реализованы различные физические принципы хранения информации — магнитный, оптический, электронный в любых их сочетаниях. Внешняя память принципиально отличается от внутренней (оперативной) способом доступа к этой памяти процессора (исполняемой программы). Устройства внешней памяти оперируют блоками информации, но никак не байтами или словами, как, например, оперативная память. Эти блоки обычно имеют фиксированный размер, кратный степени числа 2. Блок может быть переписан из внутренней памяти во внешнюю или обратно только целиком, и для выполнения любой операции обмена с внешней памятью требуется специальная процедура (подпрограмма). Процедуры обмена с устройствами внешней памяти привязаны к типу устройства, его контроллеру и способу подключения устройства к системе (интерфейсу).
По методу доступа к информации устройства внешней памяти разделяются на устройства с прямым (или непосредственным) и последовательным доступом.
Прямой доступ подразумевает возможность обращения к блокам по их адресам в произвольном порядке. Традиционными устройствами с прямым доступом являются дисковые накопители, и часто в понятие «диск», или «дисковое устройство» вкладывают значение «устройство внешней памяти прямого доступа». Так, например, виртуальный диск в ОЗУ и электронный диск на флэш-памяти отнюдь не имеют круглых, а тем более вращающихся деталей.
Традиционными устройствами с последовательным доступом являются накопители на магнитной ленте, они же стримеры. Здесь каждый блок информации тоже может иметь свой адрес, но для обращения к нему устройство хранения должно сначала найти некоторый маркер начала ленты (тома), после чего последовательным холостым чтением блока за блоком дойти до требуемого места и только тогда производить собственно операции обмена данными. Конечно, каждый раз возвращаться на начало ленты необязательно, однако необходимость последовательного сканирования блоков (вперед или назад) — неотъемлемое свойство устройств последовательного доступа. Несмотря на очевидный проигрыш во времени доступа к требуемым данным, ленточные устройства последовательного доступа в качестве внешней памяти находят применение для хранения очень больших массивов информации. В отличие от них устройства прямого доступа — диски самой различной природы — являются обязательной принадлежностью подавляющего большинства компьютеров.
Главная характеристика устройств — емкость хранения, измеряемая в килобайтах, мегабайтах, гигабайтах и терабайтах (Кбайт, Мбайт, Гбайт, Тбайт, или в английской транскрипции КВ, МВ, СВ, ТВ, или, еще короче — К, М, С, Т). Здесь, как правило, приставки кило-, мега-, гига-, тера- имеют десятичные значения — 103, 106, 109 и 1012 соответственно. В других подсистемах компьютера, наример при определении объема ОЗУ, ПЗУ и другой внутренней памяти, эти же приставки чаще применяют в двоичных значениях 2’°, 220, 230 и 240 соответственно, при этом 1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт, 1 Тбайт = 1024 Гбайт. Этими разночтениями объясняются различия значений емкости одного и того же устройства, полученных из разных источников. «Двоичные» кило-, мега-, гига-, тера- более «увесисты», поэтому емкость устройства, выраженная в десятичных единицах, будет выглядеть внушительнее. Так, например, объем памяти в 528 Мбайт (десятичных) составляет 504 Мбайт (двоичных).
Устройства внешней памяти могут иметь сменные или фиксированные носители информации. Применение сменных носителей позволяет хранить неограниченный объем информации, а если носитель и формат записи стандартизованы, то они позволяют еще и обмениваться информацией между компьютерами. Существуют устройства с автоматической сменой носителя — ленточные карусели, дисковые устройства JuкеВох. Эти достаточно дорогие устройства применяют в мощных файл-серверах. Для настольных машин имеются накопители СD-RОМ с несколькими дисками (СD-сhаngеr), сменяемыми автоматически.
Важнейшими общими параметрами устройств являются время доступа, скорость передачи данных и удельная стоимость хранения информации.
Время доступа (ассеs time) определяется как усредненный интервал от выдачи запроса на передачу блока данных до фактического начала передачи. Дисковые устройства имеют время доступа от единиц до сотен миллисекунд. Для электронных устройств внешней памяти время доступа определяется быстродействием используемых микросхем памяти и при чтении составляет доли микросекунд, причем запись может продолжаться значительно дольше, что объясняется природой энергонезависимой электронной памяти. Для устройств с подвижными носителями основной расход времени имеет место в процессе позиционирования головок (seek time — время поиска) и ожидания подхода к ним требуемого источника носителей (latency — скрытый период). Для дисковых и ленточных устройств принципы позиционирования различны, и различные составляющие процесса поиска.
Скорость записи и считывания определяется как отношение объема записываемых или считываемых данных ко времени, затрачиваемому на эту операцию. В затраты времени входит и время доступа, и время передачи данных. При этом оговаривается характер запросов — линейный или случайный, что сильно сказывается на величине скорости из-за влияния времени доступа. При определении скорости линейных запросов чтения-записи производится обращение к длинной цепочке блоков с последовательным нарастанием адреса. При определении скорости случайных запросов чтения-записи — соседние запросы разбросаны по всему носителю. Для современных многозадачных ОС характерно чередующееся выполнение нескольких потоков запросов, и в каждом потоке высока вероятность последовательного нарастания адреса.
Скорость передачи данных определяется как производительность обмена данными, измеряемая после выполнения поиска данных. Однако в способе измерения этого параметра возможны разночтения, поскольку современные устройства имеют в своем составе буферную память существенных размеров. Скорости обмена буферной памяти с собственно носителем (внутренняя скорость) и с внешним интерфейсом могут существенно различаться. Если скорость работы внешнего интерфейса ограничивается быстродействием электронных схем и достижимой частотой передаваемых сигналов, то внутренняя скорость более жестко ограничивается возможности электромеханических устройств, (скоростью движения носителя и плотностью записи). При измерениях скорости передачи на небольших объемах пересылок проявится ограничение внешнего интерфейса буферной памяти, при средних объемах — ограничение внутренней скорости, а при больших объемах проявится еще и время поиска последующих блоков информации. Бывает, что в качестве скорости передачи данных указывают лишь максимальную скорость интерфейса, а о внутренней скорости можно судить по частоте вращения дисковых носителей и числу секторов на треке.
Определение удельной стоимости хранения информации для накопителей с фиксированными носителями пояснения не требует. В случае сменных носителей этот показатель интересен для собственно носителей, но не следует забывать и о цене самих приводов, которую тоже можно приводить к их емкости.
По отношению к корпусу компьютера устройства могут быть внутренними и внешними.
Внутренние устройства помещаются в специальные трех- или пятидюймовые отсеки корпуса компьютера и питаются от его же блока питания. В описании корпусов компьютеров отсеки также подразделяются на внешние и внутренние, но они различаются лишь тем, может ли передняя панель устройства, установленного в отсек, выходить на лицевую панель корпуса или нет.
Внешние устройства помещают в отдельный корпус, а питаются они от собственного блока питания или перехватывают питание +5 В от разъема клавиатуры компьютера. Внешнее исполнение имеют как малогабаритные портативные устройства, так и особо крупные дисковые массивы. Сами приводы для внешних и внутренних устройств обычно имеют одинаковый конструктив одного из распространенных форматов.
Принципы хранения информации.
Энергонезависимое хранение информации может осуществляться на различных физических принципах. Раньше всех начали применять магнитный способ хранения, где запись нуля или единицы изменяет направление намагниченности элементарной хранящей ячейки. Устройства хранения на магнитных сердечниках состояли из матрицы ферритовых колец (по кольцу на каждый хранящийся бит), пронизанных обмотками (адреса, записи и считывания).
Шины адрес ячейки
Шины считывания информации
Рис. 8.1. Матрица ферритовых колец памяти.
Считывание выполнялось импульсом тока, пытающимся намагнитить ячейку в определенном направлении. Если ячейка была в противоположном состоянии, то эта попытки наводила импульс в обмотке считывания. Устройства ферритовой памяти были громоздкими, но сугубо статическими — в них не было движущихся частей. В устройствах с подвижным носителем хранящие ячейки движутся относительно головок записи-считывания и в зависимости от направления намагниченности вызывают в головке считывания импульс определенной полярности. На таком принципе строились и магнитные барабаны первых ЭВМ, и магнитные диски, и накопители на магнитной ленте.
Оптические устройства хранения основаны на изменении отражающей или пропускающей способности участков носителей. Носителями для первых оптических устройств были фотопленка, перфолента, перфокарты. Теперь оптические устройства хранят информацию на дисках с ячейками микроскопических размеров, считываемых лазерным лучом. В конце 2000 года появилось сообщение о новом типе оптических дисков FMD (Fluorescent Multilayer Disk = флуоресцентный многослойный диск), разработанном компанией Constetlation 3D Inc. (СЗD). В этих дисках информацию несут частички флуоресцирующего вещества, вкрапленные в слои прозрачного пластика. В отличие от СD/DVD, где информативна степень отражениz лазерного луча от текущей точки поверхности, здесь воспринимается флуоресцентное свечение, вызванное этим лучом. Оптическая система привода позволяет фокусироваться лишь на требуемом слое. Поскольку слои прозрачны, их число может быть значительно увеличено без ощутимых потерь сигнала. Для начала предлагается 12-слойный диск емкостью 50 Гбайт со скоростью считывания до 1 Гбит/с. Пока что разработана технология печати дисков с матриц (RОМ), но уже прорабатывается и технология однократно записываемых дисков. Первые сообщения о проекте «трехмерных дисков» появились еще в 1997 году.
Из электронных устройств распространение получила флэш-память, сочетающая довольно высокую плотность хранения с теперь уже приемлемой ценой. Флэш-память является статической и имеет очень высокое быстродействие считывания, но не очень быструю процедуру записи, причем для перезаписи должен предварительно стираться целый блок ячеек (современные микросхемы состоят из набора блоков). В режиме хранения на флэш-память питание можно не подавать — энергопотребление нулевое. В режиме чтения потребление достаточно малое, но стирание и запись требуют энергозатрат.
Устройства хранения на флэш-памяти выпускаются в разнообразных конструктивных исполнениях. Первые «статические диски» выполнялись в виде устройств формата 3,5″ с интерфейсом АТА. Затем появились флэш-карты с интерфейсом РС Card (РСМСIА), Card Bus, которые используются в блокнотных ПК, а также в ряде бытовых электронных устройств, например в цифровых фотокамерах. Поскольку процессы записи-считывания такого «диска» не связаны с механическими перемещениями, его производительность (особенно по чтению) на несколько порядков превышает производительность самых лучших жестких дисков. Флэш-память относится к классу электрического стирания, но использует особую технологию построения запоминающих ячеек. Стирание производится сразу для целой области ячеек или полностью для всей микросхемы.
Каждая ячейка флэш-памяти состоит всего из одного униполярного (полевого) транзистора. Чистые (стертые) ячейки содержат единицу во всех битах; при записи (программировании) нужные ячейки обнуляются. Возможно последующее программирование и уже записанных ячеек, но при этом можно обнулять единичные биты , а не наоборот. В единичное состояние ячейки переводятся только при стирании. Стирание производится для всей матрицы ячеек; стирание одиночной ячейки невозможно.
Хранение информации на магнитных дисках.
Дисковые накопители имеют своей основой механизм, схематически представленный на рис. 8.2.
Вращение диска
Головка записи-считывания
Поиск трека
Рис. 8.2. Устройство дискового накопителя
Носителем информации является диск (один или несколько), на который нанесен слой вещества, способного намагничиваться (чаще всего ферромагнитный). Хранимую информацию представляет состояние намагниченности отдельных участков рабочей поверхности. Диски вращаются с помощью двигателя шпинделя, обеспечивающего требуемую частоту вращения в рабочем режиме. На диске имеется индексный маркер, который, проходя мимо специального датчика, отмечает начало каждого оборота диска. Информация на диске располагается на концентрических треках (дорожках), нумерация которых начинается с внешнего трека (трек 00). Каждый трек разбит на секторы фиксированного размера. Сектор и является минимальным блоком информации, который может быть записан на диск или считан с него. Нумерация секторов начинается с единицы и привязывается к индексному маркеру. Каждый сектор имеет служебную область, содержащую адресную информацию, контрольные коды и некоторую другую информацию, и область данных, размер которой традиционно составляет 512 байт. Если накопитель имеет несколько рабочих поверхностей (на шпинделе может быть размещен пакет дисков, а у каждого диска могут использоваться обе поверхности), то совокупность всех треков с одинаковыми номерами составляет цилиндр. Для каждой рабочей поверхности в накопителе имеется своя головка, обеспечивающая запись и считывание информации. Головки нумеруются, начиная с нуля. Для того чтобы произвести элементарную операцию обмена — запись или чтение сектора, шпиндель должен вращаться с заданной скоростью, блок головок должен быть подведен к требуемому цилиндру, и только когда нужный сектор подойдет к выбранной головке, начнется физическая операция обмена данными между головкой и блоком электроники накопителя. Кроме того, головки считывают служебную информацию (адресную и сервисную), позволяющую определить и установить их текущее местоположение. Для записи информации на носитель используюся различные методы частотной модуляции, позволяющие кодировать двоичную информацию, намагничивая зоны магнитного слоя, проходящие под головкой. Перемагничивание зоны происходит лишь в том случае, если магнитное поле в ней преодолеет некоторый порог Нс (коэрцитивную силу), свойственный данному носителю,
в
Намагничивание
Размагничивание
+вr
-Н2 -нс +нс
Н1 н
-вr
где
При считывании намагниченные зоны наводят в головке электрический сигнал, величина напряжения которого равна:
,
где — скорость вращения диска намагниченного величиной;
w – число обмоток в считывающей головке;
S – поперечное сечение магнитного материала (зона записи), из которого декодируется ранее записанная информация.
Контроллер накопителя выполняет сборку и разборку блоков информации (секторов или целых треков), включая формирование и проверку контрольных кодов, осуществляет модуляцию и демодуляцию сигналов головок и управляет всеми механизмами накопителя.
Несмотря на кажущуюся простоту конструкции записать и потом достоверно считать информацию с диска не так-то просто. Для записи данных необходимо сформировать последовательный код, который должен быть самосинхронизирующимся:
при последующем считывании из него должны извлекаться и данные, и синхросигнал, что позволяет восстановить записанную цепочку битов (этим занимается сепаратор данных — узел дискового контроллера).
Кроме того, напомним, что индуктивные считывающие головки воспринимают только факты изменения намагниченности участков трека. Также учтем, что физическое исполнение — магнитные свойства носителя, конструкция головок, скорость движения, высота расположения головок и т. п. — задает предельно достижимую плотность изменения состояния намагниченности, которую хотелось бы использовать максимально эффективно. Эта плотность измеряется в количестве зон с различным состоянием намагниченности на дюйм длины трека и в современных накопителях достигает десятков тысяч BPI (Bit Per Inch = бит на дюйм). Для записи на диск применяют различные схемы кодирования, отличающиеся по сложности реализации и эффективности работы. В первых моделях накопителей использовалась частотная модуляция FM. Здесь для каждого бита данных на треке отводится ячейка с окнами для представления бита и синхросигнала, что весьма неэффективно расходует предел плотности намагниченности. Более эффективна модифицированная частотная модуляция MFM, при которой синхросигнал вводится только в процессе кодирования следующих подряд нулевых битов, что позволяет удвоить плотность записи при той же плотности изменения потока. Обе схемы (FM и MFM) являются схемами с побитным кодированием. Более эффективны схемы группового кодирования, при которых цепочка байтов данных (сектор) предварительно разбивается на группы по несколько битов, кодирующихся по определенным правилам. Схема кодирования RLL (Run Length Limited), как это следует из названия (работа в ограниченной длине), построена на ограничении длины неперемагничиваемых участков трека. Наиболее популярна схема RLL 2.7 — в ней число неперемагничиваемых ячеек лежит в диапазоне от 2 до 7. Для накопителей с высокой плотностью используется схема RLL 1.7, обеспечивающая большую надежность считывания.
Из-за того что линейная скорость носителя относительно головки на внутренних цилиндрах меньше, чем на внешних, для обеспечения нормальной записи при меньшей скорости приходится применять предварительную компенсацию записи. Для накопителей со встроенным контроллером этот параметр игнорируется, поскольку они сами «знают», как работать со своими дисками.
Информация на дисках записывается и считывается по-секторно, и каждый сектор имеет определенную структуру (формат). В заголовке имеется поле идентификатора, включающее номер цилиндра, головки и собственно сектора. В этом же идентификаторе может содержаться и пометка о дефектности сектора, служащая указанием на невозможность его использования для хранения данных. Достоверность поля идентификатора проверяется с помощью контрольного кода заголовка. Заголовки секторов записываются только во время операции низкоуровневого форматирования, причем для всего трека сразу. При обращении к сектору по чтению или записи заголовок только считывается. Поле данных сектора отделено от заголовка небольшим зазором, необходимым для того, чтобы при операции записи головка (точнее, обслуживающая ее схема) могла успеть переключиться из режима чтения (заголовка) в режим записи (данных). Сектор завершается контрольным кодом поля данных — контроль с помощью циклического избыточного кода) или ЕСС обнаружением и коррекцией ошибок. СКС-код позволяет только обнаруживать ошибки, а ЕСС-код — еще и исправлять ошибки небольшой кратности. В межсекторных промежутках может размещаться сервоинформация, служащая для точного наведения головки на трек.
Современные жесткие диски внутренне могут быть организованы несколько иначе, чем в вышеописанной схеме. Индексные датчики теперь не используются — начало трека определяется из считываемого сигнала. Физическая разбивка на секторы (по 512 байт данных, которым предшествует идентификатор) может отсутствовать — группа секторов трека представляет собой единый битовый поток, защищенный избыточным кодированием, из которого вычисляется блок данных, находящийся в требуемой позиции (так называемый ID-less format). Для коррекции данных применяются избыточные коды Рида-Соломона, позволяющие большинство ошибок исправлять «на лету», не требуя повторного считывания.блока данных и дополнительного оборота диска.
Для того чтобы диск можно было использовать для записи и считывания информации, он должен быть отформатирован. Форматирование может разделяться на два уровня.
1. Низкоуровневое форматирование (LLF— Low Level Formatting) — форматирование заголовков и пустых (расписанных заполнителем) полей данных всех секторов всех треков. При форматировании выполняется и верификация (проверка читаемости) каждого сектора, и в случае обнаружен неисправимых ошибок считывания в заголовке сектора делается помет о его дефектности.
2. Форматирование верхнего уровня заключается в формировании логической структуры диска (таблиц размещения файлов, корневого катале и т. п.,), соответствующее файловой подсистеме применяемой ОС. Эта процедура выполнима только после низкоуровневого форматирования.
Итак, структура трека — последовательность секторов — задается при его форматировании, а начало трека определяется контроллером по сигналу от и индексного датчика или иным способом.
Нумерация секторов, которая задается контроллеру при форматировании, может быть достаточно произвольной — важно лишь, чтобы все секторы трека имели уникальные номера в пределах допустимого диапазона.
При обращении к сектору он ищется по идентификатору, а если за оборот диска (или за несколько оборотов) сектор с указанным номером не будет найден, контроллер зафиксирует ошибку Sector not found (сектор не найден). Забота о поиске сектора по его заголовку, помещение в его поле даннь записываемой информации, снабженной контрольным кодом, а также считывание этой информации и ее проверка с помощью СКС- или ЕСС-кода лежит на контроллере накопителя. И конечно же, контроллер управляет поиском затребованного цилиндра и коммутацией головок, выбирая нужный трек.
9