Матрица для – Решение матриц ℹ️ методы решений и примеров для чайников, формулы вычислений и действий с матрицами

Содержание

От действий над матрицами к пониманию их сути… / Habr

Очень уважаю людей, которые имеют смелость заявить, что они что-то не понимают. Сам такой. То, что не понимаю, — обязательно должен изучить, осмыслить, понять. Статья «Математика на пальцах», и особенно матричная запись формул, заставили меня поделиться своим небольшим, но, кажется, немаловажным опытом работы с матрицами.

Лет эдак 20 назад довелось мне изучать высшую математику в вузе, и начинали мы с матриц (пожалуй, как и все студенты того времени). Почему-то считается, что матрицы — самая лёгкая тема в курсе высшей математики. Возможно — потому, что все действия с матрицами сводятся к знанию способов расчёта определителя и нескольких формул, построенных — опять же, на определителе. Казалось бы, всё просто. Но… Попробуйте ответить на элементарный вопрос — что такое определитель, что означает число, которое вы получаете при его расчёте? (подсказка: вариант типа «определитель — это число, которое находится по определённым правилам» не является правильным ответом, поскольку говорит о методе получения, а не о самой сути определителя). Сдаётесь? — тогда читаем дальше…

Сразу хочу сказать, что я не математик ни по образованию, ни по должности. Разве что мне интересна суть вещей, и я порой пытаюсь до них «докопаться». Так же было и с определителем: нужно было разобраться со множественной регрессией, а в этом разделе эконометрики практически всё делается через… матрицы, будь они неладны. Вот и пришлось мне самому провести небольшое исследование, поскольку ни один из знакомых математиков не дал внятного ответа на поставленный вопрос, изначально звучавший как «что такое определитель». Все утверждали, что определитель — это такое число, которое особым образом посчитано, и если оно равно нулю, то… В общем, как в любом учебнике по линейной алгебре. Спасибо, проходили.

Если какую-то идею придумал один человек, то другой человек должен быть в состоянии её понять (правда, для этого порой приходится вооружаться дополнительными знаниями). Обращение к «великому и могучему» поисковику показало, что «площадь параллелограмма равна модулю определителя матрицы, образованной векторами — сторонами параллелограмма». Говоря простым языком, если матрица — это способ записи системы уравнений, то каждое уравнение в отдельности описывает вектор. Построив из точки начала координат векторы, заданные в матрице, мы таким образом зададим в пространстве некоторую фигуру. Если наше пространство одномерное, то фигура — это отрезок; если двумерное — то фигура — параллелограмм, и так далее.

Получается, что для одномерного пространства определитель — это длина отрезка, для плоскости — площадь фигуры, для трёхмерной фигуры — её объём… дальше идут n-мерные пространства, вообразить которые нам не дано. Если объём фигуры (то есть определитель для матрицы 3*3) равен нулю, то это означает, что сама фигура не является трёхмерной (она может быть при этом двухмерной, одномерной или вообще представлять собой точку). Ранг матрицы — это истинная (максимальная) размерность пространства, для которого определитель не равен нулю.

Так, с определителем почти всё понятно: он определяет «объёмность» фигуры, образованной описанными системой уравнений векторами (хотя непонятно, почему его значение не зависит от того, имеем мы дело с исходной матрицей, или с транспонированной — возможно, транспонирование — это вид аффинного преобразования?). Теперь нужно разобраться с действиями над матрицами…

Если матрица — это система уравнений (а иначе зачем нам таблица каких-то цифр, не имеющих к реальности никакого отношения?), то мы можем с ней делать разные вещи. Например, можем сложить две строки одной и той же матрицы, или умножить строку на число (то есть каждый коэффициент строки умножаем на одно и то же число). Если у нас есть две матрицы с одинаковыми размерностями, то мы их можем сложить (главное, чтобы при этом мы не сложили бульдога с носорогом — но разве математики, разрабатывая теорию матриц, думали о таком варианте развития событий?). Интуитивно понятно, тем более что в линейной алгебре иллюстрациями подобных операций являются системы уравнений.

Однако в чём смысл умножения матриц? Как я могу умножить одну систему уравнений на другую? Какой смысл будет иметь то, что я получу в этом случае? Почему для умножения матриц неприменимо переместительное правило (то есть произведение матриц В*А не то что не равно произведению А*В, но и не всегда осуществимо)? Почему, если мы перемножим матрицу на вектор-столбец, то получим вектор-столбец, а если перемножим вектор-строку на матрицу, то получим вектор-строку?

Ну, тут уж не то что Википедия, — тут даже современные учебники по линейной алгебре бессильны дать какое-либо внятное объяснение. Поскольку изучение чего-либо по принципу «вы сначала поверьте — а поймёте потом» — не для меня, копаю в глубь веков (точнее — читаю учебники первой половины XX века) и нахожу интересную фразу…

Если совокупность обычных векторов, т.е. направленных геометрических отрезков, является трёхмерным пространством, то часть этого пространства, состоящая из векторов, параллельных некоторой плоскости, является двумерным пространством, а все векторы, параллельные некоторой прямой, образуют одномерное векторное пространство.

В книгах об этом напрямую не говорится, но получается, что векторам, параллельным некоторой плоскости, необязательно лежать на этой плоскости. То есть они могут находиться в трёхмерном пространстве где угодно, но если они параллельны именно этой плоскости, то они образуют двумерное пространство… Из приходящих мне на ум аналогий — фотография: трёхмерный мир представлен на плоскости, при этом вектору, параллельному матрице (или плёнке) фотоаппарата, будет соответствовать такой же вектор на картинке (при условии соблюдении масштаба 1:1). Отображение трёхмерного мира на плоскости «убирает» одно измерение («глубину» картинки). Если я правильно понял сложные математические концепции, перемножение двух матриц как раз и представляет собой подобное отражение одного пространства в другом. Поэтому, если отражение пространства А в пространстве В возможно, то допустимость отражения пространства В в пространстве А — не гарантируется.

Любая статья заканчивается в тот момент, когда автору надоедает её писать. Поскольку я не ставил перед собой цели объять необъятное, а исключительно хотел понять суть описанных операций над матрицами и то, как именно матрицы связаны с решаемыми мной системами уравнений, я не полез в дальнейшие дебри линейной алгебры, а вернулся к эконометрике и множественной регрессии, но сделал это уже более осознанно. Понимая, что и зачем я делаю и почему только так, а не иначе. То, что у меня получилось в этом материале, можно озаглавить как «глава о сути основных операций линейной алгебры, которую почему-то забыли напечатать в учебниках». Но ведь мы же не читаем учебников, правда? Если честно, когда я учился в университете, мне очень не хватало именно понимания затронутых здесь вопросов, поэтому я надеюсь, что, изложив этот непростой материал по возможности простыми словами, я делаю доброе дело и помогаю кому-то вникнуть в саму суть матричной алгебры, переведя операции над матрицами из раздела «камлание с бубном» в раздел «практические инструменты, применяемые осознанно».

Матрица — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июля 2019; проверки требуют 7 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июля 2019; проверки требуют 7 правок.

Ма́трица (лат. matrix — «первопричина»):

Матрица — сфера применения, взаимодействия.

  • Ма́трица в математике — объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы.
  • Матрица в физике — конденсированная среда, в которую помещаются изолированные активные частицы с целью предотвращения взаимодействия между собой и с окружающей средой.
  • Matrix — открытый протокол мгновенного обмена сообщениями.
  • Матрица (диск) — название специального диска, служащий образцом для создания дисков (компакт-диск, DVD и др.) с записью (музыки, фильмов и т. д.) при их серийном или массовом производстве.
  • Матрица (издательское дело) — вогнутая часть формы, в которой пластическое тело формуется давлением, служащее типографским шрифтом.
  • Матрица в красильном деле — деревянная пластинка с вырезанным на ней рельефом какого-нибудь узора, служащая для отливки металлических набивных форм.
    • Матрица (фото) — полупроводниковая СБИС с прямоугольной матрицей светочувствительных элементов (фотодиодов) для преобразования поступающего на неё света (отраженного от объекта) в электронный сигнал (изображение) или массив цифровых данных.
  • Матрица (экономика) — таблицы, предназначенные для диагностики состояния[1].
  • Матрица композита — связующее композиционного материала: распределяет нагрузку по армирующим элементам и защищает их.
  • Матрица (программирование) — двумерный массив.
  • Матрица (электроника) — обобщенный термин для различных объектов в электронике, в которых элементы объекта упорядочены в виде двумерного массива, аналогично математической матрице.
    • Мáтричный индикáтор — разновидность знакосинтезирующего индикатора, в котором элементы индикации сгруппированы по строкам и столбцам.
  • Hyundai Matrix — субкомпактвэн корейской компании Hyundai, производившийся в 2001—2010 годах.
  • Toyota Matrix[en] (Toyota Corolla Matrix) — компактный хэчбек компании Toyota, производивщийся в 2002—2014 годах.

Матрицы. Виды матриц

Матрицей называется прямоугольная таблица из чисел с некоторым количеством

m строк и с некоторым количеством n столбцов. Числа m и n называются порядками или размерами матрицы.

Матрица порядка m × n записывается в форме:

матрица A

или aij(i=1,2,…m; j=1,2,…n).

Числа aij входящие в состав данной матрицы называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j— номер столбца.

Матрица строка

Матрица размером 1×n, т.е. состоящая из одной строки, называется матрицей-строкой. Например:

матрица строка

Матрица столбец

Матрица размером m×1, т.е. состоящая из одного столбца, называется матрицей-столбцом. Например

матрица столбец

Нулевая матрица

Если все элементы матрицы равны нулю,то матрица называется нулевой матрицей . Например

нулевая матрица

Квадратная матрица

Матрица A порядка m×n называется квадратной матрицей, если количество строк и столбцов совпадают: m=n. Число m=n называется порядком квадратной матрицы. Например:

квадратная матрица

Главная диагональ матрицы

Элементы расположенные на местах a11, a22 ,…, ann образуют главную диагональ матрицы. Например:

главный диагональ матрицы

В случае m×n -матриц элементы aii ( i=1,2,…,min(m,n)) также образуют главную диагональ. Например:

главный диагональ матрицы

Элементы расположенные на главной диагонали называются главными диагональными элементами или просто диагональными элементами .

Побочная диагональ матрицы

Элементы расположенные на местах a1n, a2n-1 ,…, an1 образуют побочную диагональ матрицы. Например:

побочный диагональ матрицы

Диагональная матрица

Квадратная матрица называется диагональной, если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:

побочный диагональ матрицы

Единичная матрица

Квадратную матрицу n-го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, называется единичной матрицей и обозначается через E или E n, где n — порядок матрицы. Единичная матрица порядка 3 имеет следующий вид:

единичная матрицы

След матрицы

Сумма главных диагональных элементов матрицы A называется следом матрицы и обозначается Sp A или Tr A. Например:

единичная матрицы единичная матрицы

Верхняя треугольная матрица

Квадратная матрица единичная матрицы порядка n×n называется верхней треугольной матрицей, если равны нулю все элементы матрицы, расположенные под главной диагональю, т.е. aij=0, при всех i>j . Например:

верхняя треугольная матрица

Нижняя треугольная матрица

Квадратная матрица единичная матрицы порядка n×n называется нижней треугольной матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. aij=0, при всех i<j. Например:

нижняя треугольная матрица

Cтроки матрицы A образуют пространство строк матрицы и обозначаются через R(AT).

Cтолбцы матрицы A образуют пространство столбцов матрицы и обозначаются через R(A).

Ядро или нуль пространство матрицы

Множесто всех решений уравнения Ax=0, где A- mxn-матрица, x— вектор длины n — образует нуль пространство или ядро матрицы A и обозначается через Ker(A) или N(A).

 Противоположная матрица

Для любой матрицы A сущеcтвует противоположная матрица -A такая, что A+(-A)=0. Очевидно, что в качестве матрицы -A следует взять матрицу (-1)A, элементы которой отличаются от элементов A знаком.

 Кососимметричная (Кососимметрическая) матрица

Кососимметричной называется квадратная матрица, которая отличается от своей транспонированной матрицы множителем −1:

AT=−A.

В кососимметричной матрице любые два элемента, расположенные симметрично относительно главной диагонали отличаются друг от друга множителем −1, а диагональные элементы равны нулю.

Пример кососимметрической матрицы:

нижняя треугольная матрица нижняя треугольная матрица

 Разность матриц

Разностью C двух матриц A и B одинакового размера определяется равенством

C=A+(-1)B.

Для обозначения разности двух матриц используется запись:

C=A-B.

 Степень матрицы

Пусть единичная матрицы квадратная матрица размера n×n. Тогда степень матрицы определяется следующим образом:

A*A*A*...*A

A0=E,

где E-единичная матрица.

Из сочетательного свойства умножения следует:

A^p+A^q=A^(p+q)

где p,q— произвольные целые неотрицательные числа.

  Симметричная (Симметрическая) матрица

Матрица, удовлетворяющая условию A=AT называется симметричной матрицей.

Для симметричных матриц единичная матрицы имеет место равенство:

aij=aji ;   i=1,2,…n,   j=1,2,…n


Решение матриц ℹ️ методы решений и примеров для чайников, формулы вычислений и действий с матрицами

Онлайн алгоритм вычисления обратной матрицы

Понятие выражения

Определение гласит, что матрица — это прямоугольная таблица с заключёнными в ней числами. Её название обозначается латинскими прописными буквами (А, В). Таблицы бывают разной размерности — прямоугольной, квадратной, а также в виде строк и столбцов.

От количества строк и столбцов будет зависеть величина таблицы. Матрица размера m*n означает, что в таблице содержится m строк и n столбцов. Допустим, первая строка включает элементы а11, а12, а13, вторая — а21, а22, а23. Тогда элементы, где i = j (а11, а22) образовывают диагональ и называются диагональными.

Различают комплексные матрицы, у которых хотя бы один элемент равен комплексному числу, и действительные, когда все её элементы являются действительными числами. В математике комплексные числа представлены в виде a+b*i, где:

  • a — действительная часть числа;
  • b — мнимая часть;
  • i — мнимая единица (квадратный корень из -1).

На приведенном примере показаны варианты.

Решение матриц

Простейшие действия с матрицами могут быть разными. К их числу относятся:

  • умножение;
  • вычитание;
  • умножение на число;
  • перемножение между собой;
  • транспортирование матриц.

Сложение и вычитание

Действия по сложению возможны только тогда, когда матрицы одинакового порядка равны между собой. В итоге получится новое матричное выражение такой же размерности. Сложение и вычитание выполняются по общей схеме — над соответствующими элементами таблиц проводят необходимые операции. Например, нужно сложить две матрицы А и В размерности 2*2.

Действия с матрицами

Каждый элемент первой строки складывается по порядку с показателями верхней строчки второй матрицы. По аналогии производится вычитание, только вместо плюса ставится минус.

Решение матрицы онлайн калькулятор

Умножение на число

Любую таблицу чисел можно умножить на число. Тогда каждый её элемент перемножается с этим показателем. К примеру, умножим матричное выражение на 2:

Метод гаусса

Операция перемножения

Матрицы подлежат перемножению одна на другую, когда количество столбцов первой таблицы равно числу строк второй. Каждый элемент Aij будет равняться сумме произведений элементов i-строки первой таблицы, перемноженных на числа в j-столбце второй. Способ произведения наглядно представлен на примере.

Решение матрицы методом крамера

Возведение в степень

Формулу возведения в степень применяют только для квадратных матричных выражений. При этом степень должна быть натуральной. Формула возведения следующая:

Нахождение обратной матрицы

Иначе, чтобы выполнить операцию возведения таблицы чисел в степень n, требуется умножить её на себя саму n раз. Для операции возведения в степень удобно применять свойство в соответствии с формулой:

Обратная матрица

Решение представлено на примере. 1 этап: необходимо возвести в степень, где n = 2.

Метод элементарных преобразований

2 этап: сначала возводят в степень n =2. Согласно формуле перемножают таблицу чисел саму на себя n = 2 раз.

Решение систем методом Гаусса

3 этап: в итоге получаем:

Обратная матрица Гаусс

Расчёт определителя

В линейной алгебре существует понятие определителя или детерминанта. Это число, которое ставят в соответствие каждой квадратной матрице, вычисленное из её элементов по специальной формуле. Определитель или модуль используется для решения большинства задач. Детерминант самой простой матрицы определяется с помощью вычитания перемноженных элементов из побочной диагонали и главной.

Определителем матрицы А n-энного порядка называется число, которое получают из алгебраической суммы n! слагаемых, попадающих под определённые критерии. Эти слагаемые являются произведением n-элементов, взятых единично из всех столбов и строк.

Произведения могут отличаться друг от друга составом элементов. Со знаком плюс будут включаться в сумму числа, если их индексы составляют чётную подстановку, в противоположном случае их значение меняется на минус. Определитель обозначается символом det A. Круглые скобки матричной таблицы, обрамляющие её элементы, заменяются на квадратные. Формула определителя:

Решение систем линейных уравнений методом Гаусса

Определитель первого порядка, состоящий из одного элемента, равен самому этому элементу. Детерминант матричной таблицы размером 2*2 второго порядка вычисляется путём перемножения её элементов, расположенных на главной диагонали, и вычитания из них произведения элементов, находящихся в побочной диагонали. Наглядный пример:

Найти обратную матрицу пример

Для матрицы также можно найти дискриминант многочлена, отвечающий формуле:

Метод элементарных преобразований Гаусс

Когда у многочлена имеются кратные корни, тогда дискриминант равен нулю.

Обратная матрица

Прежде чем переходить к понятию обратного выражения матрицы, следует рассмотреть алгоритм её транспонирования. Во время операции строки и столбцы переставляются местами. На рисунке представлен метод решения:

Действия с матрицами

По аналогии обратная матрица сходна с обратными числами. Например, противоположной цифре 5 будет дробь 1/5 = 5 (-1) степени. Произведение этих чисел равно 1, выглядит оно так: 5*5 (-1) = 1. Умножение обычной матричной таблицы на обратную даст в итоге единичную: А* А (-1) = Е. Это аналог числовой единицы.

Но для начала нужно понять алгоритм вычисления обратной матрицы. Для этого находят её определитель. Разработано два метода решения: с помощью элементарных преобразований или алгебраических дополнений.

Более простой способ решения — путём алгебраических дополнений. Рассмотрим матричную таблицу А, обратная ей А (-1) степени находится по формуле:

Высшая математика для экономистов

Матрица обратного вида возможна только для квадратного размера таблиц 2*2, 3*3 и т. д. Обозначается она надстроенным индексом (-1). Задачу легче рассмотреть на более простом примере, когда размер таблицы равен 2*2. На первом этапе выполняют действия:

Нахождение обратной матрицы

Обратного выражения матрицы не может быть, если определитель равен нулю. В рассматриваемом случае он равен -2, поэтому всё в порядке.

2 этап: рассчитывают матрицу миноров, которая имеет те же значения, что и первоначальная. Под минором k-того порядка понимается определитель квадратной матрицы порядка k*k, составленный из её элементов, которые располагаются в выбранных k- столбцах и k-строках.

При этом расположение элементов таблицы не меняется. Чтобы найти минор верхнего левого числа, вычёркивают строчку и столбец, в которых прописан этот элемент. Оставшееся число и будет являться минором. На выходе должна получиться таблица:

Матричные уравнения Метод элементарных преобразований

3 этап: находят алгебраические дополнения.

Метод гаусса матрицы

4 этап: определяют транспонированную матрицу.

Системы линейных уравнений Метод Гаусса решения систем линейных уравнений

Итогом будет:

Проверка решения: чтобы удостовериться, что обратная таблица чисел найдена верно, следует выполнить проверочную операцию.

Алгоритмы решения систем линейных алгебраических уравнений

В рассматриваемом примере получается единичная матрица, когда на главной диагонали находятся единицы, при этом другие элементы равняются нулю. Это говорит о том, что решение было найдено правильно.

Нахождение собственных векторов

Определение собственного вектора и значений матричного выражения легче понять на примере. Для этого задают матричную таблицу чисел и ненулевой вектор Х, называемый собственным для А. Пример выражения:

Решение матриц

Согласно теореме собственными числами матричного выражения будут корни характеристического уравнения:

Вычисление матриц

Из однородной системы уравнений можно определить координаты собственного вектора Х, который соответствует значению лямбда.

Нахождение обратной матрицы

Метод Гаусса

Методом Гаусса называют способ преобразования системы уравнений линейного вида к упрощённой форме для дальнейшего облегчённого решения. Операции упрощения уравнений выполняют с помощью эквивалентных преобразований. К таким относят:

  • действия, когда в системе переставляются местами два уравнения;
  • произведение одного из уравнений в системе на действительное ненулевое число;
  • сложение первого уравнения со вторым, при этом последнее умножено на произвольное число.

Чтобы понять механизм решения, следует рассмотреть линейную систему уравнений.

Метод Гаусса матрицы

Следует переписать эту систему в матричный вид:

Обратная матрица методом Гаусса

А будет являться таблицей коэффициентов системы, b — это правая часть ограничений, а Х — вектор переменных координат, который требуется найти. Для решения используют ранг матрицы. Под ним понимают наивысший порядок минора, который отличается от 0.

В этом примере rang (A) = p. Способ эквивалентных преобразований не изменяет ранг таблицы коэффициентов.

Метод Гаусса предназначен для приведения матричной таблицы коэффициентов А к ступенчатому или диагональному виду. Расширенная система выглядит так:

Метод Гаусса примеры с решением

Допустим, а11 не равен 0. В противном случае, если это не так, то меняют эту строку с другой, где в первом столбце находится элемент, отличный от нуля. Когда подобные строчки отсутствуют, переходят к другому столбцу. Все нижние элементы столбца после а11 обнуляют. Для этих целей выполняют операции сложения строк 2,3…m с первой строчкой, умноженной на а21/а11, -а31/а11….- аm1/a11. В результате система примет вид:

Метод Гаусса алгоритм решения

На втором шаге повторяют все действия с элементами столбца 2, которые расположены ниже а22. Если показатель равен нулю, строку также меняют местами со строчкой, лежащей ниже с ненулевым элементом во втором столбце. Затем обнулению подлежат все показатели ниже а22. Для этого складывают строки 2,3 ..m, как описано выше. Выполняя процедуру со всеми элементами, приходят к матричной таблице ступенчатого или диагонального вида. Полученная расширенная таблица будет выглядеть:

Ранг методом Гаусса

Обращают внимание на последние строки.

Как решать матрицы методом Гаусса

В этом случае система уравнений имеет решение, но когда хотя бы одно из этих чисел отличается от нуля, она несовместима. Таким образом, система совместима, если ранг таблицы А равен расширенному рангу В (А|b).

Как найти обратную матрицу

Если rang А=rang (A|b), то существует множество решений, где n-p — многообразие. Из этого следует n-p неизвестных Хр+1,…Xn выбираются произвольно. Неизвестные X1, X2,…Xp вычисляют следующим образом: из последнего уравнения выражают Хр через остальные переменные, вставляя в предыдущие выражения. Затем из предпоследнего уравнения получают Хр-1 через прочие переменные и подставляют их в предыдущие выражения. Процедуру повторяют.

Найти быстро ответ и проверить себя позволяет онлайн-калькулятор. Решение матрицы методом Гаусса с помощью такого расчёта показывает подробные этапы операций. Для нахождения достаточно указать количество переменных и уравнений, отметить в полях значения чисел и нажать кнопку «Вычислить».

Способ Крамера

Метод Крамера используют для решения квадратной системы уравнений, представленной в линейном виде, где определитель основной матрицы не равен нулю. Считается, что система обладает единственным решением. Например, задана система линейных уравнений:

Матрица 3 на 4

Её необходимо заменить равноценным матричным уравнением.

Как решать матрицы Решение по Жордану матриц

Второй столбец вычисляют, а первый уже задан. Есть предположение, что определитель матрицы отличен от нуля. Из этого можно сделать выводы, что существует обратная матрица. Перемножив эквивалентное матричное уравнение на обратного формата матрицу, получим выражение:

Метод Гаусса алгоритм

В итоге получают выражения:

Метод Жордана Гаусса

Из представленных уравнений выделяют формулы Крамера:

Метод Гаусса матрицы

Метод Крамера не представляет сложности. Он может быть описан следующим алгоритмом:

  1. Высчитывают определитель дельта базовой матрицы.
  2. В матричной таблице А замещают первый столбец на вектор свободных элементов b.
  3. Выполняют расчёт определителя дельта1 выявленной матрицы А1.
  4. Определяют переменную Х1 = дельта1/дельта.
  5. Повторяют шаги со 2 по 4 пункт в матрице А для столбов 2,3…n.

Проверить решение матрицы методом Крамера онлайн позволяет калькулятор автоматического расчёта. Для получения быстрого ответа в представленные поля подставляют переменные числа и их количество. Дополнительно может потребоваться указание вычислительного метода разложения по строке или столбу. Другой вариант заключается в приведении к треугольному виду.

Указывается также представление чисел в виде целого числа, обыкновенной или десятичной дроби. После введения всех предусмотренных параметров и нажатия кнопки «Вычислить» получают готовое решение.

Лекция 4. Матрицы и определители

Матрицы и определители. Лекция 4.

Матрицы.

Основные понятия.

Матрицей называется прямоугольная таблица чисел.

Пример 13. , , , .

В общем случае матрица может содержать строк и столбцов

.

Числа называются элементами матрицы, где — указывает номер строки, указывает номер столбца.

Элементы образуют главную диагональ матрицы. Если число строк равно числу столбцов, то матрица называется квадратной. Квадратная матрица размеров называется матрицей – го порядка.

Матрицы называются равными, если у них равны элементы, стоящие на соответствующих местах, т. е. тогда и только тогда, когда , для всех , .

Квадратная матрица, у которой все элементы, кроме главной диагонали равны 0, называется диагональной.

Пример 14. .

Если все элементы матрицы равны нулю, то матрица называется нулевой.

Пример 15. .

Диагональная матрица, у которой каждый элемент диагонали равен 1, называется единичной.

Пример 16. , .

Квадратная матрица называется треугольной, если все элементы, расположенные по одну сторону от диагонали, равны нулю.

Пример 17. , .

Матрица, содержащая одну строку (столбец), называется вектором (вектор-строкой, вектор-столбцом).

Пример 18. , .

Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется транспонированной .

Пример 19. ;

Очевидно, что .

Действия над матрицами.

Матрицы одинаковых размерностей можно складывать и вычитать. Если

, , то , причем

, для всех .

Пример 20. ,

.

Умножение матрицы на число.

Чтобы умножить матрицу на число, необходимо каждый ее элемент умножить на это число.

Пример 21. Пусть , тогда . Матрица называется противоположной к матрице.

Умножение матриц.

Умножение матриц можно только в том случае, когда число столбцов матрицы равно числу строк матрицы В этом случае справедливо соотношение , причем элементы матрицы равны , , . Другими словами строки матрицы умножаются на столбцы матрицы

Пример 22. Пусть , . Тогда

,

.

Видим, что в общем случае . Если же выполняется условие , то матрицы и называются перестановочными друг с другом.

Матрица называется ступенчатой, если для её элементов выполняются условия:

  1. под первым не нулевым элементом каждой строки находится 0;

  2. первый ненулевой элемент любой строки находится правее первого не нулевого элемента любой строки, расположенной выше.

Пример 23. Следующая матрица является ступенчатой.

.

Элементарные преобразования матриц.

Элементарными преобразованиями матриц являются:

  1. Перестановка местами двух любых её строк (столбцов).

  2. Умножение элементов какой-нибудь строки (столбца) на некоторое не нулевое число.

  3. Прибавление ко всем элементам строки (столбца) соответствующих элементов другой строки (столбца), умноженных на одно и то же число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью элементарных преобразований

Любую матрицу с помощью элементарных преобразований можно привести к ступенчатому виду.

Определители.

Определителем называется квадратная числовая таблица, вычисляемая по определенным правилам.

Пример 24. Если , то . Так .

Если , то .

Так .

Если , то

. Так

.

При вычислении определителей 3-го порядка удобно пользоваться правилом треугольников. С плюсом берутся произведения элементов стоящих на главной диагонали и элементы, стоящие в вершинах следующих треугольников.

С минусом берутся произведения элементов, стоящих на второй диагонали и в вершинах следующих треугольников.

Второй метод заключается в том, что рядом с определителем справа записываются первый и второй столбцы и тогда с плюсом берутся произведения элементов, стоящих на главной диагонали и двух ей параллельных, с минусом – произведения элементов, стоящих на второй диагонали и двух ей параллельных.

Вычисление определителей более высоких порядков осуществляется путем использования их свойств.

Свойства определителей.

Пусть дана квадратная матрица

Из элементов этой матрицы можно составить определитель, который называется детерминантом матрицы и обозначается

Минором некоторого элемента определителя называют определитель, который получается вычеркиванием из него строки и столбца. Например

, .

Алгебраическим дополнением элемента определителя называют число . Например

, .

Свойства определителей.

1. Определитель не изменится, если его строки заменить столбцами и наоборот, т. е. .

2. Определитель меняет знак при перестановке любых двух его строк (столбцов).

3. Определитель, имеющий две равные строки (столбца), равен 0.

4. Общий множитель строки (столбца) можно выносить за знак определителя, например

.

5. Если элементы какой-нибудь строки (столбца) представимы в виде суммы двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, например

6. Определитель не изменится, если к какой-нибудь строке (столбцу) прибавить соответствующие элементы другой строки (столбца), умноженные на некоторое ненулевое число.

(I=I+II).

7. Определитель треугольной матрицы равен произведению её диагональных элементов.

8. Определитель равен сумме произведений элементов какой-нибудь его строки (столбца) на их алгебраические дополнения. Например

.

Для вычисления определителя мы использовали разложение по второй строке, так как она содержит большее число нулевых элементов.

9. Сумма произведений элементов какой-нибудь строки (столбца) на соответствующее алгебраическое дополнение другой строки (столбца) равна 0.

22

Обратная матрица — Википедия

Обра́тная ма́трица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

AA−1=A−1A=E{\displaystyle AA^{-1}=A^{-1}A=E}

Квадратная матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Способы нахождения обратной матрицы[править | править код]

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы[править | править код]

Метод Жордана—Гаусса[править | править код]

Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A−1.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λi{\displaystyle \Lambda _{i}} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

Λ1⋅⋯⋅Λn⋅A=ΛA=E⇒Λ=A−1{\displaystyle \Lambda _{1}\cdot \dots \cdot \Lambda _{n}\cdot A=\Lambda A=E\Rightarrow \Lambda =A^{-1}}.
Λm=[1…0−a1m/amm0…0…0…1−am−1m/amm0…00…01/amm0…00…0−am+1m/amm1…0…0…0−anm/amm0…1]{\displaystyle \Lambda _{m}={\begin{bmatrix}1&\dots &0&-a_{1m}/a_{mm}&0&\dots &0\\&&&\dots &&&\\0&\dots &1&-a_{m-1m}/a_{mm}&0&\dots &0\\0&\dots &0&1/a_{mm}&0&\dots &0\\0&\dots &0&-a_{m+1m}/a_{mm}&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_{nm}/a_{mm}&0&\dots &1\end{bmatrix}}}.

Вторая матрица после применения всех операций станет равна Λ{\displaystyle \Lambda }, то есть будет искомой. Сложность алгоритма — O(n3){\displaystyle O(n^{3})}.

С помощью матрицы алгебраических дополнений[править | править код]

Матрица, обратная матрице A{\displaystyle A}, представима в виде

A−1=adj(A)det(A){\displaystyle {A}^{-1}={{{\mbox{adj}}(A)} \over {\det(A)}}}

где adj(A){\displaystyle {\mbox{adj}}(A)} — присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).

Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.

Использование LU/LUP-разложения[править | править код]

Матричное уравнение AX=In{\displaystyle AX=I_{n}} для обратной матрицы X{\displaystyle X} можно рассматривать как совокупность n{\displaystyle n} систем вида Ax=b{\displaystyle Ax=b}. Обозначим i{\displaystyle i}-й столбец матрицы X{\displaystyle X} через Xi{\displaystyle X_{i}}; тогда AXi=ei{\displaystyle AX_{i}=e_{i}}, i=1,…,n{\displaystyle i=1,\ldots ,n}, поскольку i{\displaystyle i}-м столбцом матрицы In{\displaystyle I_{n}} является единичный вектор ei{\displaystyle e_{i}}. другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³)[1].

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение PA=LU{\displaystyle PA=LU}. Пусть PA=B{\displaystyle PA=B}, B−1=D{\displaystyle B^{-1}=D}. Тогда из свойств обратной матрицы можно записать: D=U−1L−1{\displaystyle D=U^{-1}L^{-1}}. Если умножить это равенство на U и L то можно получить два равенства вида UD=L−1{\displaystyle UD=L^{-1}} и DL=U−1{\displaystyle DL=U^{-1}}. Первое из этих равенств представляет собой систему из n² линейных уравнений для n(n+1)2{\displaystyle {\frac {n(n+1)}{2}}}, из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для n(n−1)2{\displaystyle {\frac {n(n-1)}{2}}}, из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно рекуррентно определить все n² элементов матрицы D. Тогда из равенства (PA)−1 = A−1P−1 = B−1 = D получаем равенство A−1=DP{\displaystyle A^{-1}=DP}.

В случае использования LU-разложения не требуется перестановки столбцов матрицы D, но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма — O(n³).

Итерационные методы[править | править код]

Методы Шульца[править | править код]

{Ψk=E−AUk,Uk+1=Uk∑i=0nΨki{\displaystyle {\begin{cases}\Psi _{k}=E-AU_{k},\\U_{k+1}=U_{k}\sum _{i=0}^{n}\Psi _{k}^{i}\end{cases}}}

Оценка погрешности[править | править код]
Выбор начального приближения[править | править код]

Проблема выбора начального приближения U0{\displaystyle U_{0}} в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору U0{\displaystyle U_{0}}, обеспечивающие выполнение условия ρ(Ψ0)<1{\displaystyle \rho (\Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы AAT{\displaystyle AA^{T}} (а именно, если A — симметричная положительно определённая матрица и ρ(A)≤β{\displaystyle \rho (A)\leq \beta }, то можно взять U0=αE{\displaystyle U_{0}={\alpha }E}, где α∈(0,2β){\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)}; если же A — произвольная невырожденная матрица и ρ(AAT)≤β{\displaystyle \rho (AA^{T})\leq \beta }, то полагают U0=αAT{\displaystyle U_{0}={\alpha }A^{T}}, где также α∈(0,2β){\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)}; можно конечно упростить ситуацию и, воспользовавшись тем, что ρ(AAT)≤kAATk{\displaystyle \rho (AA^{T})\leq {\mathcal {k}}AA^{T}{\mathcal {k}}}, положить U0=AT‖AAT‖{\displaystyle U_{0}={\frac {A^{T}}{\|AA^{T}\|}}}). Во-вторых, при таком задании начальной матрицы нет гарантии, что ‖Ψ0‖{\displaystyle \|\Psi _{0}\|} будет малой (возможно, даже окажется ‖Ψ0‖>1{\displaystyle \|\Psi _{0}\|>1}), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Матрица 2 × 2[править | править код]

A−1=[abcd]−1=1detA[d−b−ca]=1ad−bc[d−b−ca]{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det \mathbf {A} }}{\begin{bmatrix}d&-b\\-c&a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}d&-b\\-c&a\\\end{bmatrix}}}[2]

Обращение матрицы 2 × 2 возможно только при условии, что ad−bc=detA≠0{\displaystyle ad-bc=\det A\neq 0}.

Виды матриц.

Навигация по странице:

Определение.

Квадратной матрицей называется матрица, у которой количество строк равно количеству столбцов (размера n×n), число n называется порядком матрицы.

Пример.

 4  1  -7  — квадратная матрица размера 3×3
 -1  0  2 
 4  6  7 

Определение.

Нулевой матрицей называется матрица, все элементы которой равны нулю, т.е. aij = 0, ∀i, j.

Пример.

 0  0  0  — нулевая матрица
 0  0  0 

Определение.

Вектор-строкой называется матрица, состоящая из одной строки.

Пример.

 1  4  -5  — вектор-строка

Определение.

Вектор-столбцом называется матрица, состоящая из одного столбца.

Пример.

 8  — вектор-столбец
 -7 
 3 

Определение.

Диагональной матрицей называется квадратная матрица, все элементы которой, стоящие вне главной диагонали, равны нулю.

Пример диагональной матрицы.

 4  0  0  — диагональные элементы произвольныене диагональные элементы равны нулю
 0  5  0 
 0  0  0 

Определение.

Единичной матрицей называется диагональная матрица, диагональные элементы которой равны 1.

Обозначение.

Единичную матрицу обычно обозначают символом E.

Пример единичной матрицы.

E =  1  0  0  — диагональные элементы равны 1не диагональные элементы равны нулю
 0  1  0 
 0  0  1 

Определение.

Верхней треугольной матрицей называется матрица, все элементы которой ниже главной диагонали равны нулю.

Пример верхней треугольной матрицы.

 7  -6  0 
 0  1  6 
 0  0  0 

Определение.

Нижней треугольной матрицей называется матрица, все элементы которой выше главной диагонали равны нулю.

Пример нижней треугольной матрицы.

 7  0  0 
 6  1  0 
 -2  0  5 

N.B. Диагональная матрица — матрица, которая одновременно является верхней треугольной и нижней треугольной.


Определение.

Ступенчатой матрицей называется матрица, удовлетворяющая следующим условиям:
  • если матрица содержит нулевую строку, то все строки, расположенные под нею, также нулевые;
  • если первый ненулевой элемент некоторой строки расположен в столбце с номером i, и следующая строка не нулевая, то первый ненулевой элемент следующей строки должен находиться в столбце с номером большим, чем i.

Примеры ступенчатых матриц.

 7  0  8 
 0  0  4 
 7  0  8  8  8 
 0  0  1  3  5 
 0  0  0  -3  5 
 0  0  0  0  0 
 0  0  0  0  0 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *