Cpu характеристики: Основные характеристики процессора – Центральный процессор — Википедия

Содержание

Основные характеристики процессора

Производительность центрального процессора зависит от показателей разрядности, частоты и особенностей архитектуры процессора. От этой интегральной величины зависит работа ЭВМ в целом, а значит, при выборе придется обратить внимание на все характеристики процессора. Процессор должен обладать достаточной производительностью для решения определенных задач.

Производители процессоров

На рынке процессоров два крупных, лидирующих производителя: Intel и AMD. Характеристики процессоров у разных производителей различны. Многое зависит от совершенства технологий, использованных материалов, компоновки и других нюансов.

Тактовая частота процессора

Тактовая частота указывает скорость работы процессора в герцах (ГГц) – количество рабочих операций в секунду. Тактовая частота процессора подразделяется на внутреннюю и внешнюю. Да, эта характеристика процессора значительно влияет на скорость работы вашего ПК, но производительность зависит не только он неё.

  • Внутренняя тактовая частота обозначает темп, с которым процессор обрабатывает внутренние команды. Чем выше показатель – тем быстрее внешняя тактовая частота.
  • Внешняя тактовая частота определяет, с какой скоростью процессор обращается к оперативной памяти.

Разрядность процессора

Разрядность представляет собой предельное количество разрядов двоичного числа, над которым единовременно может производиться машинная операция передачи информации. Чем больше разрядность, тем выше производительность процессора. Сейчас большинство процессоров имеют разрядность в 64 бита и поддерживают от 4 гигабайт ОЗУ. Это одна из основных характеристик процессора, но далеко не единственная, при выборе нужно руководствоваться не только ей.

Размерность технологического процесса

Определяет размеры транзистора (толщину и длину затвора). Частота работы кристалла определяется частотой переключений транзисторов (из закрытого состояния в открытое). Если меньше размер, значит меньше площадь, а значит и выделение тепла. Размерность технологического процесса измеряется в нанометрах, чем меньше этот показатель, тем лучше.

Сокет или разъем

Гнездовой или щелевой разъем, предназначен для интеграции чипа ЦП в схему материнской платы. Каждый разъем допускает установку только определенного типа процессоров, сверьте сокет выбранного процессора с вашей материнской платой, она должна ему соответствовать.

Тип гнездового разъема:

  • PGA (Pin Grid Array) – корпус квадратной или прямоугольной формы, штырьковые контакты.
  • BGA (Ball Grid Array) – шарики припоя.
  • LGA (Land Grid Array) – контактные площадки.

Кэш-память процессора

Кэш-память процессора является одной из ключевых характеристик, на которую стоит обратить внимание при выборе. Кэш-память – массив сверхскоростной энергозависимой ОЗУ. Является буфером, в котором хранятся данные, с которыми процессор взаимодействует чаще или взаимодействовал в процессе последних операций. Благодаря этому уменьшается количество обращений процессора к основной памяти. Этот вид памяти делится на три уровня: L1, L2, L3. Каждый из уровней отличается по размеру памяти и скорости, и задачи ускорения у них отличаются. L1 — самый маленький и быстрый, L3 — самый большой и медленный. Чем больше объем кэш-памяти, тем лучше. К каждому уровню процессор обращается поочередно (от меньшего к большему), пока не обнаружит в одном из них нужную информацию. Если ничего не найдено, обращается к оперативной памяти.

Энергопотребление и тепловыделение

Чем выше энергопотребление процессора, тем выше его тепловыделение. Нужно позаботиться о достаточном охлаждении.

TDP (Thermal Design Power) – параметр, указывающий на то количество тепла, которое способна отвести охлаждающая система от определенного процессора при наибольшей нагрузке. Значение представлено в ваттах при максимальной температуре корпуса процессора.

ACP (Average CPU Power) – средняя мощность процессора, показывающая энергопотребление процессора при конкретных задачах.

Значение параметра ACP на практике всегда ниже TDP.

Рабочая температура процессора

Наивысший показатель температуры поверхности процессора, при котором возможна нормальная работа (54-100 °С). Этот показатель зависит от нагрузки на процессор и от качества отвода тепла. При превышении предела компьютер либо перезагрузится, либо просто отключится. Это очень важная характеристика процессора, которая напрямую влияет на выбор типа охлаждения.

Множитель и системная шина

Эти параметры необходимы скорее тем, кто со временем планирует разогнать свой камень. Front Side Bus – частота системной шины материнской платы. Тактовая частота процессора является произведением частоты FSB на множитель процессора. У большинства процессоров заблокирован разгон по множителю, поэтому приходится разгонять по шине. Стоит ознакомиться с этой характеристикой процессора более детально, если вы через какой-то промежуток времени захотите увеличить производительность программным способом, без апгрейда железа.

Встроенное графическое ядро

Процессор может быть оснащен графическим ядром, отвечающим за вывод изображения на ваш монитор. В последние годы, встроенные видеокарты такого рода хорошо оптимизированы и без проблем тянут основной пакет программ и большинство игр на средних или минимальных настройках. Для работы в офисных приложениях и серфинга в интернете, просмотра Full HD видео и игры на средних настройках такой видеокарты вполне достаточно, и это Intel.

Что касается процессоров от компании AMD, их встроенные графические процессоры более производительные, что делает процессоры от AMD приоритетнее для любителей игровых приложений, желающих сэкономить на покупке дискретной видеокарты.

Количество ядер (потоков)

Многоядерность одна из важнейших характеристик центрального процессора, но в последнее время ей уделяют слишком много внимания. Да, сейчас уже нужно постараться, чтобы найти рабочие одноядерные процессоры, они себя благополучно изжили. На замену одноядерным пришли процессоры с 2, 4 и 8 ядрами.

Если 2 и 4-ядерные вошли в обиход очень быстро, процессоры с 8 ядрами пока не так востребованы. Для использования офисных приложений и серфинга в интернете достаточно 2 ядер, 4 ядра требуются для САПР и графических приложений, которым просто необходимо работать в несколько потоков.

Что касается 8 ядер, очень мало программ поддерживают так много потоков, а значит, такой процессор для большинства приложений просто бесполезен. Обычно, чем меньше потоков, тем больше тактовая частота. Из этого следует, что если программа, адаптированная под 4 ядра, а не под 8, на 8-ядерном процессе она будет работать медленнее. Но этот процессор отличное решение для тех, кому необходимо работать сразу в большом количестве требовательных программ одновременно. Равномерно распределив нагрузку по ядрам процессора можно наслаждаться отличной производительностью во всех необходимых программ.

В большинстве процессоров количество физических ядер соответствует количеству потоков: 8 ядер – 8 потоков. Но есть процессоры, где благодаря Hyper-Threading, к примеру, 4-ядерный процессор может обрабатывать 8 потоков одновременно.

Заключение

Из статьи вы узнали о существующих характеристиках центральных процессоров, теперь вы в курсе, на что нужно обратить внимание при выборе. Если информация в статье больше не актуальна, сообщите об этом в комментариях, тогда мы обновим или дополним информацию в статье.

Характеристики центрального процессора

Процессор является очень высокотехнологичным устройством, он по праву считается «мозгом» любого компьютера. В одной из предыдущих статей мы с вами подробно рассмотрели устройство центрального процессора (CPU) компьютера. Но, как и любой другой компонент, центральный процессор имеет множество параметров. И сегодня я предлагаю в подробностях рассмотреть характеристики центрального процессора.

Техпроцесс

Итак, техпроцесс. Современные процессоры состоят из огромного числа транзисторов, размещенных на маленьком кремниевом кристалле. Чем больше транзисторов — тем мощнее в итоге получается процессор. Высокой плотности монтажа удается достичь за счет многослойной структуры готового кристалла процессора. Процесс очень напоминает фотолитографию (когда проявляют фотопленку, свет проходит через негатив и создает изображение на фотобумаге).

Современные технологии позволяют создавать транзисторы размером всего 22 нанометра и даже меньше! Для сравнения, толщина человеческого волоса около 50000 нм.  Со временем техпроцесс будет только уменьшаться, что позволит создавать еще более мощные ЦП, такая тенденция прослеживается уже сейчас. Чем меньше техпроцесс, тем больше транзисторов можно разместить на одном кристалле, и тем мощнее в итоге будет процессор, вот так.

Архитектура

Архитектура напрямую определяет внутреннюю конструкцию процессора (схему кристалла). В рамках одной архитектуры процессоры могут иметь различные характеристики: кэш (об этом ниже), техпроцесс и т.д. Обычно о таких процессорах (с одной архитектурой, но разными характеристиками) говорят, что они имеют разные ядра. По сложившейся традиции компании-производители ЦП дают ядрам различные имена, чтобы было проще ориентироваться.

Примечательно, что компания Intel в качестве названия своих разработок использует географические названия мест (гор, городов, рек), которые находятся неподалеку от места производства. А вот за AMD такого замечено не было…

Например, cpu микроархитектуры Intel Core выпускались с разными ядрами: Conroe, Merom, Kentsfield, Wolfdale, Yorkfield и др. Ядро микропроцессора определяет его 3 важнейшие характеристики: тактовую частоту, частоту шины FSB и сокет (разъем). Кроме того, сами ядра могут многократно дорабатываться, это называется «ревизии» (степпинги). В процессе таких доработок исправляются недоработки или слабые места в конструкции, уменьшается тепловыделение и энергопотребление.

Ядра

Количество вычислительных ядер — еще одна характеристика, чем оно больше, тем, соответственно, лучше. Все существующие компании-производители процессоров уже давно пошли по пути увеличения количества ядер, размещенных на одном кристалле. На сегодняшний день уже трудно найти модели с количеством ядер менее двух. Многоядерность — как способ повышения производительности признана самым перспективным направлением развития процессоров.

Однако, важно понимать, что эффективность (производительность) работы ядер различных моделей ЦП может существенно отличаться. К тому же, далеко не все существующие на сегодняшний день приложения (особенно старые) оптимизированы для работы с множеством ядер, и по умолчанию могут использовать лишь какое-то одно из них. А поскольку у многих многоядерных cpu тактовая частота каждого ядра меньше, чем у одноядерных моделей, то в таких приложениях даже может наблюдаться снижение производительности.

Впрочем, в большинстве случаев эта проблема легко решается, путем установки специальной программы (CPU control, например), которая позволяет принудительно задействовать все или несколько конкретных ядер, которые вы вольны выбирать сами. К слову, у меня был такой случай, когда некая «Nfs Undercover», казалось бы — 2008 года (когда у многих уже были двухъядерные модели CPU), отказывалась работать со всеми 4 ядрами моего intel core 2 quad q8400 и использовала лишь одно из них, но эта программа все исправила.

Прежде чем продолжить, хотелось бы немного рассказать об основных производителях центральных микропроцессоров. Их, как ни странно, всего 2 — Intel и Amd (прямо как левая и правая палочка «Twix»). И хотя этим двум гигантам по разным оценкам принадлежит порядка 92% всех произведенных на сегодняшний день процессоров, доли этих компаний на рынке совсем не равные, как это может показаться — Intel принадлежит около 75-80%. Остальные 8% продукции — узкоспециализированные ЦП, как, например, для мобильных устройств.

В последнее время доля AMD на рынке микропроцессоров возросла и продолжает расти, за счет игровых приставок Xbox One и PlayStation 4 — где успешно применяются их CPU.

Раз уж мы заговорили про ядра, то будет не лишним упомянуть про такое понятие, как — «многопоточность». Количество ядер процессора и количество потоков не обязательно должно совпадать. Так, например, знаменитый микропроцессор Intel Core i7 с технологией «Hyper-Threading» имеет на «борту» 4 ядра, однако работает в 8 потоков — что дает ему очень хорошую производительность, даже большую, нежели у некоторых 6-ядерных конкурентов.

Многопоточность, в случае с современными 4-ядерными cpu это 8 потоков, позволяет условно разделить обработку приложения на 2 части, то есть обе части приложения выполняются всеми ядрами одновременно (параллельно, если хотите). Такая технология позволяет ощутимо увеличить производительность в некоторых специфичных приложениях, которые «заточены», или другими словами, оптимизированы для этой технологии.

В случае со старыми приложениями, либо просто не оптимизированными для многопоточности, может наблюдаться обратный эффект — снижение производительности. Поэтому в BIOS материнской платы предусмотрена функция отключения гиперпоточности у процессора тогда, когда вам это будет необходимо. Многопоточность будет очень полезна при рендеринге видео или архивации большого объема данных.

Частота CPU

Тактовая частота процессора — количество операций (тактов) в единицу времени, а конкретнее — в секунду. Этот параметр идет «рука об руку» с другой не менее важной характеристикой — частотой шины FSB, о которой речь пойдет чуть ниже, и напрямую от нее зависит. Чем выше частота ЦП — тем он производительней, однако, подобная зависимость прослеживается только в рамках одной «линейки» (или по-другому — модельного ряда, как, например, все cpu intel core 2 quad), поскольку кроме тактовой частоты на производительность влияют ряд других параметров.

Частота шины FSB. Эта шина представляет из себя набор сигнальных линий, по которым данные поступают в микропроцессор, а также выходят из него. Частота этой шины пропорциональна тактовой частоте процессора, а именно — чем выше частота шины, тем более высокой может быть частота процессора в итоге. К слову, некоторые начинающие (и не только) оверклокеры используют этот прием, а именно — поднимают частоту шины FSB («разгоняют» ее), увеличивая тем самым тактовую частоту процессора.

Существует несколько направлений «разгона» процессора компьютера, можно разгонять «по шине», «по множителю», «по напряжению» и т.д.. Разгон «по шине» чреват тем, что одновременно с процессором «разгоняется» и некоторое другое железо компьютера, включая оперативную память, которая может перестать работать при превышении порога максимальной рабочей частоты памяти. Также, если специально не фиксировать в биосе PCI разъемы, то могут «заглючить» видеокарта, sata (жесткие диски) и сетевая карта.

Кэш

Поскольку процессор очень «тесно» общается с ОЗУ, иногда он может простаивать, ожидая данные из нее. Кэш-память — это блок очень быстрой оперативной памяти, который расположен прямо на ядре процессора. Она выступает в роли буфера между ОЗУ и самим процессором, мгновенно записывая и отдавая информацию ему. Существует несколько «уровней» такой памяти: кэш первого уровня L1, L2 и L3. Кэш-память первого уровня считается самой быстрой и по скорости выигрывает у обычной ОЗУ.

Следствием применения кэш-памяти является увеличение быстродействия. Чем больше объем кэша любого уровня — тем лучше. Однако кэш-память первого уровня L1, как правило, обладает небольшим объемом (по современным меркам) — всего до 128 кб. Кэш-память второго уровня L2 выполняет все те же операции, что и L1, однако, обладает худшим быстродействием, но большим объемом (до 16 мб).

В случае с многоядерными процессорами размер кэша первого уровня указывается только для одного ядра. Для кэш-памяти второго уровня указывается суммарный объем.

Чем больше размер кэша, тем больше данных в него можно записать, однако тем медленнее процессор их оттуда будет «доставать». Поэтому и придумали разделение по уровням. Думаю, вы уже догадались, что кэш L3 будет иметь самый большой объем из всех и самое худшее быстродействие. Но по факту, кэш L3 встречается далеко не во всех процессорах, а только в самых мощных дорогих решениях, а также в серверных версиях, где он действительно нужен. Большинство же процессоров имеют только два уровня кэша, коих, впрочем, хватает.

Тепловыделение

TDP (Вт) — показатель, характеризующий тепловыделение (нагрев) процессора во время его работы. По TPD можно косвенно судить об энергопотреблении cpu, но не стоит их приравнивать друг к другу, как это довольно часто бывает, ведь потребляемая мощность процессора тоже измеряется в «Вт». Но процессор не может выделять в виде тепла столько же энергии, сколько к нему подвели, и уж тем более — отдавать больше энергии, то есть вырабатывать ее. Поэтому TDP всегда будет меньше на несколько Ватт.

В случае с мои процессором (core quad q8400) TDP составляет 95 Вт, а энергопотребление — 136 Вт. На величину TDP очень сильно влияет техпроцесс и частота ядра процессора (в меньшей степени). Чем больше техпроцесс (нм), тем сильнее будет греться процессор. То же самое актуально и для частоты. TDP нужен еще для того, чтобы оценить — какой мощности кулер необходимо установить в систему, чтобы обеспечить эффективное охлаждение.

Учтите, что разные производители по разному определяют величину TDP, поэтому сравнение уместно только в рамках одного производителя процессоров.

Видеокарта в процессоре

Кроме обычных нескольких ядер в некоторых моделях процессоров иногда можно встретить еще одно «ядро», отвечающее только за вывод изображения на монитор, то есть — миниатюрная «видеокарта», расположенная прямо внутри ЦП. Как правило, ими оснащаются все «топовые» процессоры и большинство процессоров среднего ценового сегмента.

Конечно, производительность таких видео-ядер не идет ни в какое сравнение с полноценными видеокартами, однако для серфинга в интернете и просмотра фильмов вполне сгодится. Ими обычно комплектуются офисные компьютеры различных организаций, ноутбуки и нетбуки, что позволяет сэкономить на приобретении отдельной дискретной (полноценной) видеокарты.

Прослеживается и такая связь: обычно, чем дороже процессор, тем более производительное видео-ядро в нем установлено. В самых мощных моделях (core i7, например) мощность графического ядра настолько высока, что позволяет играть в современные игры на средних, средне-низких настройках графики, что по уровню вполне соответствует некоторым бюджетным видеокартам.

При всем этом, в процессе построения картинки у процессора отбирается часть вычислительной мощности и резервируется некоторый объем ОЗУ в качестве видеопамяти.

Сокет

Socket cpu представляет из себя разъем (гнездо) на материнской плате компьютера, в который и устанавливается процессор. Соответственно — это «гнездо» должно быть рассчитано на установку в него процессора определенных размеров (длины, ширины) с определенным количеством контактов на нижней части. Если вы планируете сделать апгрейд своего компьютера (поставить более мощный процессор), обязательно посмотрите какие вообще микропроцессоры поддерживает ваша материнская плата.

Подробнее о том, что такое сокет процессора уже упоминалось ранее, поэтому останавливаться на этом здесь подробно не будем. В той же статье мельком упоминалось, что сокет, помимо всего прочего, влияет на тип оперативной памяти (ddr2 или ddr3), который можно установить в материнскую плату. Например, ранее повсеместно применяемый сокет LGA 775 поддерживал только ОЗУ типа ddr2. В общем, разные сокеты соответствуют разным типам процессоров.

Компания AMD делает сокеты с длительной «поддержкой», иными словами, каждое новое поколение их процессоров не всегда требует перехода на другой сокет. С Intel дела обстоят с точностью наоборот — почти каждое новое поколение процессоров выпускается под совершенно другой сокет, из-за чего неизбежно приходится менять еще и материнскую плату.

K

Наличие этой буквы в названии процессора говорит о присутствии разгонного потенциала, то есть, иными словами, в таком процессоре уже с завода идет разблокированный множитель. Это позволяет «разогнать» ЦП без поднятия частоты FSB шины, а лишь за счет выбора коэффициента умножения (множителя). В большинстве cpu (не K) множитель заблокирован на уровне ядра. В моделях K-серии вы вольны сами выбирать значение множителя через BIOS компьютера, тем самым разгоняя ТОЛЬКО процессор, а не все остальное железо.

 

основные технические характеристики, рабочая температура, производители и самостоятельный разгон

 

Что такое центральный процессор, и для чего он нужен

Само слово процессор происходит от английского глагола to process, что в переводе на русский будет звучать, как обрабатывать. В общем понимании, под данным термином подразумевается устройство или набор программ, которые используются для совершения вычислительных операций или обработки массива данных или процесса.

Содержание: 

[show/hide]

В персональном компьютере процессор выполняет функцию «мозга», являясь основной микросхемой, которая требуется для бесперебойной и правильной работы ПК. Под управлением CPU находятся все внутренние и периферийные устройства.

Внешне процессор представляет собой небольшую квадратную плату, верхняя часть которой закрыта металлической крышкой, служащей для защиты микросхем, а нижняя поверхность усыпана большим количеством контактов. Именно этой стороной процессор устанавливается в специальный разъём или сокет, располагающийся на материнской плате. ЦП, или центральный процессор, является самой важной деталью современного компьютера. Без команды, которую отдаёт CPU, не происходит выполнение ни одной, даже самой простой, операции, например, сложение двух чисел или запись одного байта информации.

Как работает процессор

  • Принцип работы процессора – это последовательная обработка разных операций. Они происходят очень быстро, основные из них:
    При запуске любого процесса, заключающегося в исполнении программного кода, управляющий блок ЦП извлекает все необходимые данные и набор операндов, требуемых к исполнению. Далее это отгружается в буферную или кэш-память.
  •  На выходе из кэша весь поток информации делится на две категории – инструкции и значения. Они перенаправляются в соответствующие ячейки памяти, которые называются регистры. Первые помещаются в регистры команд, вторая категория − в регистры данных.
  •  Находящуюся в регистрах памяти информацию обрабатывает арифметически-логическое устройство. Это одна из частей ЦП, которая требуется для проведения арифметических и логических операций.
  •  Результаты вычислений разделяются на два потока – законченные и незаконченные, которые, в свою очередь, отправляются обратно в кэш-память.
  •  По завершению цикла вычислений конечный итог записывается в оперативную память. Это требуется для высвобождения места в буфере, которое необходимо для проведения новых вычислительных операций. При переполнении кэша все неактивные процессы перемещаются в ОЗУ или на нижний уровень.

shema cp

shema cp

Упрощённая схема работы центрального процессора

Из чего состоит процессор

Чтобы представить, как работает ЦПУ, нужно понимать, из каких частей он состоит. Основными составляющими процессора являются:

  1. Верхняя крышка, которая представляет собой металлическую пластину, выполняющую функции защиты внутреннего содержимого и теплоотведения.
  2.  Кристалл. Это самая важная часть CPU. Кристалл изготавливается из кремния и содержит на себе большое количество мельчайших микросхем.
  3.  Подложка из текстолита, которая служит контактной площадкой. На ней крепятся все детали ЦП и располагаются контакты, через которые происходит взаимодействие со всей остальной системой.

При креплении верхней крышки применяется клей-герметик, способный выдерживать воздействие высоких температур, а для устранения зазора внутри собранного процессора используется термопаста. После застывания она образует своеобразный «мостик», который требуется для обеспечения оттока тепла от кристалла.

Что такое ядро процессора

Если сам центральный процессор можно назвать «мозгом» компьютера, то ядро считается основной деталью самого ЦП. Ядро – это набор микросхем, расположенных на площадке из кремния, размер которой не превышает квадратного сантиметра. Совокупность микроскопических логических элементов, посредством которых реализована принципиальная схема работы, носит название архитектуры.

Немного технических подробностей: в современных процессорах крепление ядра к платформе чипа осуществляется с помощью системы «флип-чип», такие стыки обеспечивают максимальную плотность соединения.

Каждое ядро состоит из определённого количества функциональных блоков:

  1.  блок работы с прерываниями, который необходим для быстрого переключения между задачами;
  2.  блок выработки инструкций, отвечающий за получение и направление команд для последующей обработки;
  3.  блок декодирования, который нужен для обработки поступающих команд и определения действия, необходимых для этого;
  4.  управляющий блок, который занимается передачей обработанных инструкций на прочие функциональные части и координацией нагрузки;

 последними являются блоки выполнения и сохранения.

5 27

5 27

Ядро процессора представляет собой мельчайшую плату, на которой расположены рабочие элементы

Что такое сокет процессора

Термин socket переводится с английского языка как «гнездо» или «разъём». Для персонального компьютера данный термин одновременно относится непосредственно к материнской плате и процессору. Сокет – это место крепления ЦП. Они различаются между собой такими характеристиками, как размер, количество и тип контактов, особенностями монтажа охлаждения.

 Два крупнейших производителя процессоров – Intel и AMD − ведут давнюю маркетинговую войну, предлагая каждый свой собственный сокет, подходящий только под CPU своего производства. Цифра в маркировке конкретного сокета, например, LGA 775, обозначает количество контактов или контактных ножек. Также в технологическом плане сокеты могут различаться между собой:

  •  присутствием дополнительных контроллеров;
  •  возможностью технологии поддержи графического ядра процессора;
  •  производительностью.

Сокет также может оказывать влияние на следующие параметры работы компьютера:

  • вид поддерживаемой ОЗУ;
  • частоту работы шины FSB;
  • косвенно, на версию PCI-e и разъём SATA.

Создание специального гнезда для крепления центрального процессора требуется, чтобы пользователь мог совершать апргрейд системы и менять ЦПУ в случае его выхода из строя.

Сокет процессор – это гнездо для его установки на материнской плате

Графическое ядро в процессоре: что это такое

Одной из деталей ЦП, кроме непосредственно основного ядра, может быть графический процессор. Что это такое, и для чего требуется применение подобного компонента? Сразу следует отметить, что встраивание графического ядра не является обязательным и присутствует не в каждом процессоре. Это устройство требуется для исполнения основных функций CPU в виде решения вычислительных задач, а также поддержку графики.

 Причинами, по которым производители используют технологии объединения двух функций в одном ядре, являются:

  •  сокращение энергопотребления, поскольку меньшие по размеру устройства требуют меньше питания и затрат на охлаждение;
  •  компактность;
  •  снижение стоимости.

Применение интегрированной или встроенной графики чаще всего наблюдается в ноутбуках или недорогих ПК, предназначенных для офисной работы, где нет завышенных требований к графике.

7 29

7 29

Графическое ядро – это вынесенный на ЦП графический сопроцессор

Основные понятия процессора в информатике

Что такое потоки в процессоре

Поток выполнения в ЦП – это наименьшая единица обработки, которая назначается ядром, необходимая для разделения кода и контекста исполняемого процесса. Одномоментно может существовать несколько процессов, которые одновременно используют ресурсы ЦП. Существует оригинальная разработка компании Intel, которая стала применяться в моделях, начиная с процессора Intel Core i3, которая именуется HyperThreading. Это технология деления физического ядра на два логических. Таким образом, операционная система создаёт дополнительные вычислительные мощности и увеличивает поточность. Получается, что только показатель количества ядер не будет решающим, поскольку в некоторых случаях компьютеры, имеющие 4 ядра, проигрывают по быстродействию тем, которые имеют всего 2.

Что такое техпроцесс в процессоре

Под техпроцессом в информатике понимается размер транзисторов, применяемых в ядре компьютера. Процесс изготовления ЦП происходит по методу фотолитографии, когда из покрытого диэлектрической плёнкой кристалла под действие света вытравливаются транзисторы. Используемое оптическое оборудование имеет такой показатель, как разрешающая способность. Это и будет технологическим процессом. Чем она выше, тем большее количество транзисторов можно уместить на одном кристалле.

 Снижению размеров кристалла способствует:

  • снижение тепловыделения и энергопотребления;
  • производительность, поскольку при сохранении физического размера кристалла удаётся поместить на нём большее количество рабочих элементов.

Единицей измерения техпроцесса является нанометр (10-9). Большинство современных процессоров изготавливается по 22 нм технологическому процессу.

 Техпроцесс – это увеличение количества рабочих элементов процессора при сохранении его размеров

Что такое виртуализация процессора

Основа метода заключается в разделении ЦП на гостевую и мониторную часть. Если требуется переключение с основной на гостевую ОС, тогда процессор автоматически осуществляет эту операцию, сохраняя видимыми только те значения регистра, которые требуются для стабильной работы. Поскольку гостевая операционная система взаимодействует напрямую с процессором, то работа виртуальной машины будет значительно быстрее.

 Включение виртуализации возможно в настройках BIOS. Большая часть материнских плат и процессоров от AMD не поддерживает технологию создания виртуальной машины аппаратными методами. Тут на помощь пользователю приходят программные способы.

10 28

10 28

Виртуализация активируется в БИОС

Что такое регистры процессора

Регистр процессора – это специальный набор цифровых электрических схем, которые относятся к сверхбыстрой памяти, необходимой ЦП для хранения результатов промежуточных операций. Каждый процессор содержит великое множество регистров, большая часть которых недоступна программисту и зарезервирована для исполнения основных функций ядра. Существуют регистры общего и специального назначения. Первая группа доступна для обращения, вторая используется самим процессором. Поскольку скорость взаимодействия с регистрами ЦП выше, чем обращение в оперативной памяти, они активно применяются программистами для написания программных продуктов.

11 24

11 24

Основные технические характеристики процессора

Что такое тактовая частота процессора

Многие пользователи слышали такое понятие, как тактовая частота, но не все до конца представляют себе, что это такое. Говоря простым языком, это количество операций, которое может выполнять ЦП за 1 секунду. Здесь действует правило – чем выше показатель такта, тем более производительный компьютер.

Единицей измерения тактовой частоты является Герц, который по физическому смыслу является отображением количества колебаний за установленный отрезок времени. Образование тактовых колебаний происходит за счёт действия кристалла кварца, который располагается в тактовом резонаторе. После подачи напряжения происходит возникновение колебаний электрического тока. Они передаются на генератор, преобразующий их в импульсы, которые посылаются на шины данных. Тактовая частота процессора не единственная характеристика оценки скорости работы ПК. Также требуется учитывать количество ядер и объём буферной памяти.

Что такое разрядность процессора

Каждый пользователь ОС от Windows при установке новых программ сталкивался с выбором версии под разрядность системы. Что же такое разрядность ЦПУ? Выражаясь простым языком, это показатель, называемый иначе машинным словом, показывающий, сколько бит информации ЦП обрабатывает за один такт. В современных процессорах этот показатель может быть кратным 32 или 64.

Разрядность может иметь значение 32 и 64 бита

Что такое троттлинг процессора

Троттлинг, или дросселирование, – это защитный механизм, который применяется для предотвращения перегрева центрального процессора или возникновения аппаратных сбоев при работе. Функция активна по умолчанию и срабатывает при повышении температуры до критической отметки, которая установлена для каждой конкретной модели ЦП производителем. Защита осуществляется путём снижения производительности ядра. При возвращении температуры к нормальным показателям функция автоматически отключается. Существует возможность принудительно поменять параметры троттлинга через БИОС. Она активно используется любителями разгона ЦП или оверклокерами, но для простого пользователя подобные изменения чреваты поломкой ПК.

 При превышении допустимых температур ЦП автоматически включается система защиты, или троттлинг

Температура процессора и видеокарты

При работе ядра и прочих элементов ЦП выделяется большое количество тепла, именно поэтому в современных компьютерах используются мощные системы охлаждения, как центрального процессора, так и основных узлов материнской платы. Требовательные программы, которые активно используют мощности ЦП и видеокарты (обычно это игры), нагружают процессор, что приводит к быстрому повышению температуры. В этом случае включается троттлинг. Многие производители видеокарт утверждают, что их продукция способна нормально функционировать даже при 100°C. В реальности предельной температурой будет та, которая указана в технической документации.

Самостоятельно контролировать температурный режим можно посредством специального софта для мониторинга (AIDA64, GPU Temp, Speccy). Если при работе или игре наблюдается подтормаживание, значит, вполне вероятно, температура возросла до критической отметки, и автоматически сработала защита.

Самостоятельно отслеживать температуру ЦП и видеокарты можно посредством специального софта

Что такое турбо буст в процессоре

Turbo Boost – это запатентованная технология компании Intel, которая применяется в процессорах Intel Core i5 и i7 первых трёх генераций. Она применяется для аппаратного ускорения работы ЦП на определённое время. С использованием технологии процедура разгона осуществляется с учётом всех важных параметров – силы тока, температуры, напряжения, состояния ОС, поэтому она полностью безопасна для компьютера. Прирост в скорости работы процессора носит временный характер и будет зависеть от типа нагрузки, количества ядер и конфигурации платформы. Дополнительно следует отметить, что технология поддерживается только операционными системами Windows 7 и 8.

 Фирменная технология от компании Intel позволяет добиться временного улучшения производительности компьютера

Виды процессоров

Всего принято выделять 5 основных видов процессоров в компьютере:

  • Буферный. Это сопроцессор, который требуется для предварительной обработки информации между периферией и ЦП.
  • Препроцессор. По своей сути, это аналогичный предыдущему процессор, назначением которого является промежуточная обработка данных.
  • CISC. ЦП, выпускаемый компанией Intel, который отличается от обычного увеличенным набором команд.
  • RISC. Альтернативная версия CISC, имеющая сокращённое количество команд. Большинство крупных производителей процессоров работает на сочетании двух разновидностей (CISC и RISC), что позволит увеличить мощность и скорость работы ядра.
  • Клоны. Это процессоры, которые выпускаются некрупными производителями по лицензии или полностью пиратским способом.

Самые популярные модели и производители

Рынок микропроцессоров делят два крупных производителя – Intel и AMD, которые ведут непримиримую борьбу на протяжении всего времени своего существования. Каждая компания предлагает свои готовые решения. Выбор конкретной модели является субъективным решением конечного пользователя, поскольку каждый производитель предлагает широкую линейку моделей, имеющую как бюджетные варианты, так и топовые игровые ЦП.

Наибольшую популярность в линейке процессоров от Intel приобрели модели Intel Core i3, i5 и i7. В зависимости от модификации они могут использоваться как в игровых ПК, так и в офисных машинах. У AMD одними из лучших считаются процессоры серии Ryzen, демонстрирующие хорошие показатели производительности. Серия Athlon до сих пор встречается, но относится уже к архивным. Для нетребовательного пользовател

Основные характеристики центрального процессора компьютерной системы

Зная характеристики процессора, можно разложить его по полочкам и адекватно оценить вычислительную производительность будущей системы. Именно поэтому, очень важно хорошо разбираться во всех основных характеристиках процессоров.

Данная статья будет вводным материалом, где будут перечислены все основные параметры CPU с кратким описанием каждого. Для более подробного ознакомления с какой-либо характеристикой, Вам просто необходимо будет перейти по нужным ссылкам, где в отдельных статьях будет подробно расписано про каждый из пунктов.

Сразу оговорюсь: некоторым расскажу, а некоторым напомню, одно простое правило комплексности характеристик. То есть, к выводам относительно производительности того, или иного процессора нельзя подходить с точки зрения лишь одной характеристики. К примеру, утверждение «лучше тот процессор, у которого частота больше», уже не работает в силу появления понятия многоядерности и других факторов. Точно так же, нельзя выбирать процессор по количеству ядер, ведь есть и другие не менее важные критерии. Так что, настоятельно рекомендую смотреть на все характеристики, и оценивать процессор по всем параметрам сразу. Итак, давайте, пожалуй, больше конкретики, поэтому подъезжаем к конкретным основным характеристикам процессоров. 

1. Многоядерность процессора

Эта характеристика, последние несколько лет, является одной из наиболее важных в сфере центральных процессоров, но не решающей, как я уже упоминал выше. Уже давно прошла эра одноядерных процессоров, поэтому сейчас стоит выбирать многоядерные процессоры (одноядерные еще надо постараться найти). Соответственно, количество ядер нужно подбирать, под конкретные задачи. К примеру, для простеньких задач в виде офисных приложений и сёрфинга в интернете, двухъядерного процессора хватит более чем полностью.

А вот для таких задач как профессиональная работа с графикой, понадобится процессор с 4 или 8 ядрами – многое решает конкретная модель процессора и специфика задач. Прочитать подробно о самих принципах многоядерности вы можете в полной статье.

Читать статью: Многоядерность процессоров

2. Техпроцесс процесора

Техпроцесс производства напрямую не влияет на производительность процессора при выполнении задач, но и тут есть одно «но». Увеличение тактовой частоты или любые другие архитектурные изменения, невозможны без вноса изменений в текущий техпроцесс, так как в пределах одного семейства процессоров на одном техпроцессе, запас на наращивание тактовой частоты ограничен. В 2011-2012 годах были выпущены процессоры с техпроцессом 22нм, и всё идёт к уменьшению данных показателей. По сути 22 нм — это ширина базы транзисторов, на которых преимущественно построены процессоры. Логичен тот факт, что чем меньше будет ширина базы транзистора, то тем больше их можно будет «впихнуть» на кристалл, а значит — производительность процессора увеличится. На данный момент процессоры AMD имеют в своем распоряжении техпроцесс 32нм, интел — 22 нм.

Читать статью: Техпроцесс процессоров

3. Тактовая частота процессора

Наиболее известная характеристика процессоров – это тактовая частота. Частотой процессора определяется количество производимых вычислений в единицу времени и от неё напрямую зависит производительность процессора. Частота современных центральных процессоров колеблется от 1 до 4 ГГц, но не стоит смотреть только на тактовую частоту процессора, следует обращать внимание и на другие параметры. Безусловно частота процессора до сих пор является важным параметром, рекомендую почитать полную статью по данной характеристике.

Читать статью: Тактовая частота процесора

4. Объём кэш-памяти

Кэш современных процессоров значительно поддает им производительности. Кэш – это сверхбыстрая энергозависимая память, которая позволяет процессору быстро получить доступ к определённым данным, которые часто используются.

Различают кэш-память нескольких уровней:

— кэш первого уровня является самым быстрым, но при этом его размер очень ограничен;

— кэш второго уровня чуть медленнее, но при этом немного больше по объёму.

— также и с кэш-памятью третьего уровня, которая немного медленнее кэша первого и второго уровня, но всё равно значительно быстрее оперативной памяти. Сейчас размер кэш-памяти третьего уровня достигает 12-16 Мбайт и более. Ограниченность объёма кэш-памяти проявляется в её дороговизне из-за сложного процесса производства.

Читать статью: Кэш-память процессора

5. Сокет процессора

Сокетом, является разъём на материнской плате, в который устанавливается сам процессор. Опять же, сокет не является прямой характеристикой процессора, но данный фактор настолько важен, что мы не можем о нем не вспомнить. Очень важно, чтобы сокет процессора и сокет материнской платы совпадали, ибо процессор который позиционируется под сокет LGA 1155, никак не будет работать на материнской плате с сокетом LGA 775, об этом нужно помнить, и всегда при подборе комплектующих сверять данные параметры. Настоятельно рекомендую ознакомиться с полной статьей о сокетах процессоров.

Читать статью: Сокет процессора

Пока что это всё, некоторые другие характеристики, по мере написания подробных статей, будут добавлены в ближайшем будущем. Но вы можете ознакомится и с другими материалами, которые относяться к компьютерным процессоррам, например, как наносить термопасту на процессор.


Основные характеристики центрального процессора компьютерной системы

Зная характеристики процессора, можно разложить его по полочкам и адекватно оценить вычислительную производительность будущей системы. Именно поэтому, очень важно хорошо разбираться во всех основных характеристиках процессоров.

Данная статья будет вводным материалом, где будут перечислены все основные параметры CPU с кратким описанием каждого. Для более подробного ознакомления с какой-либо характеристикой, Вам просто необходимо будет перейти по нужным ссылкам, где в отдельных статьях будет подробно расписано про каждый из пунктов.

Сразу оговорюсь: некоторым расскажу, а некоторым напомню, одно простое правило комплексности характеристик. То есть, к выводам относительно производительности того, или иного процессора нельзя подходить с точки зрения лишь одной характеристики. К примеру, утверждение «лучше тот процессор, у которого частота больше», уже не работает в силу появления понятия многоядерности и других факторов. Точно так же, нельзя выбирать процессор по количеству ядер, ведь есть и другие не менее важные критерии. Так что, настоятельно рекомендую смотреть на все характеристики, и оценивать процессор по всем параметрам сразу. Итак, давайте, пожалуй, больше конкретики, поэтому подъезжаем к конкретным основным характеристикам процессоров. 

1. Многоядерность процессора

Эта характеристика, последние несколько лет, является одной из наиболее важных в сфере центральных процессоров, но не решающей, как я уже упоминал выше. Уже давно прошла эра одноядерных процессоров, поэтому сейчас стоит выбирать многоядерные процессоры (одноядерные еще надо постараться найти). Соответственно, количество ядер нужно подбирать, под конкретные задачи. К примеру, для простеньких задач в виде офисных приложений и сёрфинга в интернете, двухъядерного процессора хватит более чем полностью.

А вот для таких задач как профессиональная работа с графикой, понадобится процессор с 4 или 8 ядрами – многое решает конкретная модель процессора и специфика задач. Прочитать подробно о самих принципах многоядерности вы можете в полной статье.

Читать статью: Многоядерность процессоров

2. Техпроцесс процесора

Техпроцесс производства напрямую не влияет на производительность процессора при выполнении задач, но и тут есть одно «но». Увеличение тактовой частоты или любые другие архитектурные изменения, невозможны без вноса изменений в текущий техпроцесс, так как в пределах одного семейства процессоров на одном техпроцессе, запас на наращивание тактовой частоты ограничен. В 2011-2012 годах были выпущены процессоры с техпроцессом 22нм, и всё идёт к уменьшению данных показателей. По сути 22 нм — это ширина базы транзисторов, на которых преимущественно построены процессоры. Логичен тот факт, что чем меньше будет ширина базы транзистора, то тем больше их можно будет «впихнуть» на кристалл, а значит — производительность процессора увеличится. На данный момент процессоры AMD имеют в своем распоряжении техпроцесс 32нм, интел — 22 нм.

Читать статью: Техпроцесс процессоров

3. Тактовая частота процессора

Наиболее известная характеристика процессоров – это тактовая частота. Частотой процессора определяется количество производимых вычислений в единицу времени и от неё напрямую зависит производительность процессора. Частота современных центральных процессоров колеблется от 1 до 4 ГГц, но не стоит смотреть только на тактовую частоту процессора, следует обращать внимание и на другие параметры. Безусловно частота процессора до сих пор является важным параметром, рекомендую почитать полную статью по данной характеристике.

Читать статью: Тактовая частота процесора

4. Объём кэш-памяти

Кэш современных процессоров значительно поддает им производительности. Кэш – это сверхбыстрая энергозависимая память, которая позволяет процессору быстро получить доступ к определённым данным, которые часто используются.

Различают кэш-память нескольких уровней:

— кэш первого уровня является самым быстрым, но при этом его размер очень ограничен;

— кэш второго уровня чуть медленнее, но при этом немного больше по объёму.

— также и с кэш-памятью третьего уровня, которая немного медленнее кэша первого и второго уровня, но всё равно значительно быстрее оперативной памяти. Сейчас размер кэш-памяти третьего уровня достигает 12-16 Мбайт и более. Ограниченность объёма кэш-памяти проявляется в её дороговизне из-за сложного процесса производства.

Читать статью: Кэш-память процессора

5. Сокет процессора

Сокетом, является разъём на материнской плате, в который устанавливается сам процессор. Опять же, сокет не является прямой характеристикой процессора, но данный фактор настолько важен, что мы не можем о нем не вспомнить. Очень важно, чтобы сокет процессора и сокет материнской платы совпадали, ибо процессор который позиционируется под сокет LGA 1155, никак не будет работать на материнской плате с сокетом LGA 775, об этом нужно помнить, и всегда при подборе комплектующих сверять данные параметры. Настоятельно рекомендую ознакомиться с полной статьей о сокетах процессоров.

Читать статью: Сокет процессора

Пока что это всё, некоторые другие характеристики, по мере написания подробных статей, будут добавлены в ближайшем будущем. Но вы можете ознакомится и с другими материалами, которые относяться к компьютерным процессоррам, например, как наносить термопасту на процессор.


К основным характеристикам процессора относится?

Основой любого персонального компьютера является центральный процессор (ЦП), который производит практически все вычисления, сбор данных, анализирует и систематизирует полученную информацию. Именно поэтому выбор ЦП выражает фундамент производительной работы компьютера в будущем.  Нынешнее время даёт широкий выбор для пользователя, предоставляя несколько типов ЦП с целым рядом всевозможных функций…

Процессор Intel Core i7 Процессор Intel Core i7

Основные характеристики центрального процессора:

  • Тактовая частота — скорость работы процессора. Частота измеряется в герцах и прямо пропорциональна производительности  ПК, т.е. чем выше частота, тем быстрее и стабильнее работает компьютер. Сегодня можно найти ЦП частота которых равна более  3 Гигагерцам.
  • Количество ядер – число возможных внутренних ядер ЦП, колеблется от 1 до 8 (и это не предел!). обработка мультимедийных файлов, создание документов и простые 3D игры вероятны на процессорах с двумя ядрами.
    Но в случаях с высокотехнологичными трехмерными программами , новыми играми, а также спец — обработка видео требуется четырёх или более ядерный  ЦП.
  • Шина или FBS – связь, которая синхронизирует взаимодействие работы процессора с оперативной памятью, частота шины которой должна быть не менее 1333 МГц.
  • Кеш – временная область хранения файлов или данных пропускаемых системой, чем больше размер кеша, тем выше производительность компьютера.
  • Socket — это разъем (гнездо), интегрированное в материнскую плату, в него устанавливается процессор. Сокет материнской платы должен быть идентичным сокету процессора, иначе компьютер не будет функционировать!
  • Комплект Центрального Процессора —  два типа: TRAY и BOX. Кулер, радиатор и документация входит в комплект BOX. Вторым более лёгким вариантом, является TRAY: без кулера, документов, упакован в пластиковый лоток.

Фирмы производители процессоров

Основные поставщики процессоров – это AMD и Intel. Сносное соотношение цены и качества свойственно для процессоров фирмы AMD. Отличная продуктивность вычислительных операций позволяет пользователю насладиться качеством работы игр и скоростью обработки файлов.

Процессор AMD Phenom X4Процессор AMD Phenom X4

Процессоры Intel обладают высокой частотой, это крайне положительно сказывается на эффективности работы и производительности компьютера.

Оптимальный вариант процессора

  1. Для обработки видео, тем кто любит проводить время за новыми играми и фильмами в HD качестве, могут подойти высоко мощные процессоры, такие как Phenom II  X4, AMD Phenom II X6, Intel core i5 и i7.
  2. Для обработки офисных документов, скажем так для бюджетного варианта, достаточно процессора AMD Athlon II X2 или Intel core i3

Вместо послесловия

Ну вот и все основные качественно важные характеристики и функции центральных процессоров, которые действительны по сей день. Стоит отметить, что прогресс неумолимо  идёт вперёд и гоняться за новинками компьютерного железа просто не имеет смысла, постарайтесь сделать правильный выбор, чтобы компьютер не успел состариться морально за пару лет.