Новые аккумуляторы – Свежие новости Аккумулятор, события, факты, мнения экспертов, комментарии. Последние новости Аккумулятор. Свежие новости Аккумулятор на сегодня Пн, 27 Январь 2020

Содержание

Аккумуляторы нового поколения

Наверх
  • Рейтинги
  • Обзоры
    • Смартфоны и планшеты
    • Компьютеры и ноутбуки
    • Комплектующие
    • Периферия
    • Фото и видео
    • Аксессуары
    • ТВ и аудио
    • Техника для дома
    • Программы и приложения
  • Новости
  • Советы
    • Покупка
    • Эксплуатация
    • Ремонт
  • Подборки
    • Смартфоны и планшеты
    • Компьютеры
    • Аксессуары
    • ТВ и аудио
    • Фото и видео
    • Программы и приложения
    • Техника для дома
  • Гейминг
    • Игры
    • Железо
  • Еще
    • Важное
    • Технологии
    • Тест скорости
Рейтинги Обзоры Новости Советы Подборки

какими могут быть аккумуляторы будущего / Mail.ru Group corporate blog / Habr

В последние годы мы часто слышали, что вот-вот — и человечество получит аккумуляторы, которые будут способны питать наши гаджеты неделями, а то и месяцами, при этом очень компактные и быстрозаряжаемые. Но воз и ныне там. Почему до сих пор не появились более эффективные аккумуляторы и какие существуют разработки в мире, читайте под катом.

Сегодня ряд стартапов близки к созданию безопасных компактных аккумуляторов со стоимостью хранения энергии около 100 долларов за кВт⋅ч. Это позволило бы решить проблему электропитания в режиме 24/7 и во многих случаях перейти на возобновляемые источники энергии, а заодно снизило бы вес и стоимость электромобилей.

Но все эти разработки крайне медленно приближаются к коммерческому уровню, что не позволяет ускорить переход с ископаемых на возобновляемые источники. Даже Илон Маск, который любит смелые обещания, был вынужден признать, что его автомобильное подразделение постепенно улучшает литий-ионные аккумуляторы, а не создаёт прорывные технологии.

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков.

Основатель компании SolidEnergy Systems Кичао Ху (Qichao Hu), в течение десяти лет разрабатывавший литий-металлический аккумулятор (анод металлический, а не графитовый, как в традиционных литий-ионных), утверждает, что главная проблема при создании новых технологий хранения энергии заключается в том, что при улучшении какого-то одного параметра ухудшаются остальные. К тому же сегодня существует столько разработок, авторы которых громко утверждают о своём превосходстве, что стартапам очень трудно убедить потенциальных инвесторов и привлечь достаточно средств для продолжения исследований.

Согласно отчёту Lux Research, за последние 8—9 лет компания вложила в исследование хранения энергии около 4 млрд долларов, из которых стартапам, создающим «технологии нового поколения», в среднем досталось по 40 млн долларов. При этом Tesla вложила около 5 млрд долларов в Gigafactory, занимающуюся производством литий-ионных аккумуляторов. Такой разрыв очень трудно преодолеть.

По словам Герда Седера (Gerd Ceder), профессора в области материаловедения Калифорнийского университета в Беркли, создание маленькой производственной линии и решение всех производственных проблем для налаживания выпуска аккумуляторов обходится примерно в 500 млн долларов. Автопроизводители могут годами тестировать новые аккумуляторные технологии, прежде чем решить, приобретать ли создавшие их стартапы. Даже если новая технология выходит на рынок, нужно преодолеть опасный период наращивания объёмов и поиска клиентов. К примеру, компании Leyden Energy и A123 Systems потерпели неудачу, несмотря на перспективность их продуктов, поскольку финансовые потребности оказались выше расчётных, а спрос не оправдал ожиданий. Ещё два стартапа, Seeo и Sakti3, не успели выйти на массовые объёмы производства и значительный уровень дохода и были куплены за гораздо меньшие суммы, чем ожидали первичные инвесторы.

В то же время три основных мировых производителя аккумуляторов — Samsung, LG и Panasonic — не слишком заинтересованы в появлении инноваций и радикальных переменах, они предпочитают незначительно улучшать свою продукцию. Так что все стартапы, предлагающие «прорывные технологии», сталкиваются с основной проблемой, о которой они предпочитают не упоминать: литий-ионные аккумуляторы, разработанные в конце 1970-х, продолжают совершенствоваться.

Но всё же — какие технологии могут прийти на смену вездесущим литий-ионным аккумуляторам?

Литий-воздушные «дышащие» аккумуляторы


В литий-воздушных аккумуляторах в качестве окислителя используется кислород. Потенциально они могут быть в разы дешевле и легче литий-ионных аккумуляторов, а их ёмкость способна оказаться гораздо больше при сравнимых размерах. Главные проблемы технологии: значительная потеря энергии за счёт теплового рассеивания при зарядке (до 30 %) и относительно быстрая деградация ёмкости. Но есть надежда, что в течение 5—10 лет эти проблемы удастся решить. Например, в прошлом году была представлена новая разновидность литий-воздушной технологии — аккумулятор с нанолитическим катодом.

Зарядное устройство Bioo



Это устройство в виде специального горшка для растений, использующего энергию фотосинтеза для зарядки мобильных гаджетов. Причём оно уже доступно в продаже. Устройство может обеспечивать две-три сессии зарядки в день с напряжением 3,5 В и силой тока 0,5 А. Органические материалы в горшке взаимодействуют с водой и продуктами реакции фотосинтеза, в результате получается достаточно энергии для зарядки смартфонов и планшетов.

Представьте себе целые рощи, в которых каждое дерево высажено над таким устройством, только более крупным и мощным. Это позволит снабжать «бесплатной» энергией окружающие дома и будет веской причиной для защиты лесов от вырубки.

Аккумуляторы с золотыми нанопроводниками



В Калифорнийском университете в Ирвайне разработали нанопроводниковые аккумуляторы, которые могут выдерживать более 200 тыс. циклов зарядки в течение трёх месяцев без каких-либо признаков деградации ёмкости. Это позволит многократно увеличить жизненный цикл систем питания в критически важных системах и потребительской электронике.

Нанопроводники в тысячи раз тоньше человеческого волоса обещают светлое будущее. В своей разработке учёные применили золотые провода в оболочке из диоксида марганца, которые помещены в гелеобразный электролит. Это предотвращает разрушение нанопроводников при каждом цикле зарядки.

Магниевые аккумуляторы



В Toyota работают над использованием магния в аккумуляторах. Это позволит создавать маленькие, плотно упакованные модули, которым не нужны защитные корпуса. В долгосрочной перспективе такие аккумуляторы могут быть дешевле и компактнее литий-ионных. Правда, случится это ещё не скоро. Если случится.

Твердотельные аккумуляторы


В обычных литий-ионных аккумуляторах в качестве среды для переноса заряженных частиц между электродами используется жидкий легковоспламеняющийся электролит, постепенно приводящий к деградации аккумулятора.

Этого недостатка лишены твердотельные литий-ионные аккумуляторы, которые сегодня считаются одними из самых перспективных. В частности, разработчики Toyota опубликовали научную работу, в которой описали свои эксперименты с сульфидными сверхионными проводниками. Если у них всё получится, то будут созданы аккумуляторы на уровне суперконденсаторов — они станут полностью заряжаться или разряжаться всего за семь минут. Идеальный вариант для электромобилей. А благодаря твердотельной структуре такие аккумуляторы будут гораздо стабильнее и безопаснее современных литий-ионных. Расширится и их рабочий температурный диапазон — от –30 до +100 градусов по Цельсию.

Учёные из Массачусетского технологического института в содружестве с Samsung также разработали твердотельные аккумуляторы, превосходящие по своим характеристикам современные литий-ионные. Они безопаснее, энергоёмкость выше на 20—30 %, да к тому же выдерживают сотни тысяч циклов перезарядки. Да ещё и не пожароопасны.

Топливные ячейки


Совершенствование топливных ячеек может привести к тому, что смартфоны мы будем заряжать раз в неделю, а дроны станут летать дольше часа. Учёные из Пхоханского университета науки и технологии (Южная Корея) создали ячейку, в которой объединили пористые элементы из нержавеющей стали с тонкоплёночным электролитом и электродами с минимальной теплоёмкостью. Конструкция оказалась надёжнее литий-ионных аккумуляторов и работает дольше них. Не исключено, что разработка будет внедрена в коммерческие продукты, в первую очередь в смартфоны Samsung.

Графеновые автомобильные аккумуляторы



Многие специалисты считают, что будущее — за графеновыми аккумуляторами. В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей.

Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг.

Микросуперконденсаторы, изготовленные с помощью лазера


Учёные из Университета Райса добились прогресса в разработке микросуперконденсаторов. Один из главных недостатков технологии — дороговизна изготовления, но применение лазера может привести к существенному удешевлению. Электроды для конденсаторов вырезаются лазером из пластикового листа, что многократно снижает трудоёмкость производства. Такие аккумуляторы могут заряжаться в 50 раз быстрее литий-ионных, а разряжаются медленнее используемых сегодня суперконденсаторов. К тому же они надёжны, в ходе экспериментов продолжали работать даже после 10 тыс. сгибаний.

Натрий-ионные аккумуляторы


Группа французских исследователей и компаний RS2E разработала натрий-ионные аккумуляторы для ноутбуков, в которых используется обычная соль. Принцип работы и процесс изготовления держатся в секрете. Ёмкость 6,5-сантиметрового аккумулятора — 90 Вт⋅ч/кг, что сравнимо с массовыми литий-ионными, но он выдерживает пока не более 2 тыс. циклов зарядки.

Пенные аккумуляторы



Другая тенденция в разработке технологий хранения энергии — создание трёхмерных структур. В частности, компания Prieto создала аккумулятор на основе субстрата пенометалла (меди). Здесь нет легковоспламеняющегося электролита, у такого аккумулятора большой ресурс, он быстрее заряжается, его плотность в пять раз выше, а также он дешевле и меньше современных аккумуляторов. В Prieto надеются сначала внедрить свою разработку в носимую электронику, но утверждают, что технологию можно будет распространить шире: использовать и в смартфонах, и даже в автомобилях.

Быстрозаряжаемый «наножелток» повышенной ёмкости


Ещё одна разработка Массачусетского технологического института — наночастицы для аккумуляторов: полая оболочка из диоксида титана, внутри которой (как желток в яйце) находится наполнитель из алюминиевой пудры, серной кислоты и оксисульфата титана. Размеры наполнителя могут меняться независимо от оболочки. Применение таких частиц позволило в три раза увеличить ёмкость современных аккумуляторов, а длительность полной зарядки снизилась до шести минут. Также снизилась скорость деградации аккумулятора. Вишенка на торте — дешевизна производства и простота масштабирования.

Алюминий-ионный аккумулятор сверхбыстрой зарядки



В Стэнфорде разработали алюминий-ионный аккумулятор, который полностью заряжается примерно за одну минуту. При этом сам аккумулятор обладает некоторой гибкостью. Главная проблема — удельная ёмкость примерно вдвое ниже, чем у литий-ионных аккумуляторов. Хотя, учитывая скорость зарядки, это не так критично.

Alfa battery — две недели на воде


Если компании Fuji Pigment удастся довести до ума свой алюминий-воздушный аккумулятор Alfa battery, то нас ждёт появление носителей энергии, ёмкость которых в 40 раз больше ёмкости литий-ионных. Более того, аккумулятор перезаряжается доливкой воды, простой или подсоленной. Как утверждают разработчики, на одном заряде Alfa сможет работать до двух недель. Возможно, сначала такие аккумуляторы появятся на электромобилях. Представьте себе автозаправку, на которую вы заезжаете за водой.

Аккумуляторы, которые можно сгибать, как бумагу


Компания Jenax создала гибкий аккумулятор J.Flex, похожий на плотную бумагу. Его даже можно складывать. К тому же он не боится воды и потому очень удобен для использования в одежде. Или представьте себе наручные часы с аккумулятором в виде ремешка. Эта технология позволит и уменьшить размер самих гаджетов, и увеличить носимый объём энергии. Другой сценарий — создание гибких складных смартфонов и планшетов. Нужен экран побольше? Просто разверните сложенный вдвое гаджет.

Как утверждают разработчики, тестовый образец выдерживает 200 тыс. складываний без потери ёмкости.

Эластичные аккумуляторы


Над созданием гибких носителей энергии работают во многих компаниях. А команда учёных из Университета штата Аризона пошла дальше и с помощью особой механической конструкции создала аккумулятор в виде эластичной ленты. Не исключено, что идея будет развита и позволит встраивать аккумуляторы в одежду.

Мочевой аккумулятор



В 2013 году Фонд Билла Гейтса вложился в продолжение исследований Bristol Robotic Laboratory по созданию аккумуляторов, работающих на моче. Весь цимес в использовании «микробных топливных ячеек»: в них содержатся микроорганизмы, расщепляющие мочу и вырабатывающие электричество. Кто знает, возможно, скоро поход в туалет будет не только потребностью, но и в буквальном смысле полезным занятием.

Ryden — углеродные аккумуляторы с быстрой зарядкой


В 2014 году компания Power Japan Plus сообщила о планах по выпуску аккумуляторов, в основе которых лежат углеродные материалы. Их можно было производить на том же оборудовании, что и литий-ионные. Углеродные аккумуляторы должны работать дольше и заряжаться в 20 раз быстрее литий-ионных. Был заявлен ресурс в 3 тыс. циклов зарядки.

Органический аккумулятор, почти даром


В Гарварде была создана технология органических аккумуляторов, стоимость производства которых составляла бы 27 долларов за кВт⋅ч. Это на 96 % дешевле аккумуляторов на основе металлов (порядка 700 долларов за кВт⋅ч). В изобретении применяются молекулы хинонов, практически идентичные тем, что содержатся в ревене. По эффективности органические аккумуляторы не уступают традиционным и могут без проблем масштабироваться до огромных размеров.

Просто добавь песка


Эта технология представляет собой модернизацию литий-ионных аккумуляторов. В Калифорнийском университете в Риверсайде вместо графитовых анодов использовали обожжённую смесь очищенного и измельчённого песка (читай — кварца) с солью и магнием. Это позволило повысить производительность обычных литий-ионных аккумуляторов и примерно втрое увеличить их срок службы.

Быстрозаряжаемые и долгоживущие


В Наньянском технологическом университете (Сингапур) разработали свою модификацию литий-ионного аккумулятора, который заряжается на 70 % за две минуты и служит в 10 раз дольше обычных литий-ионных. В нём анод изготовлен не из графита, а из гелеобразного вещества на основе диоксида титана — дешёвого и широко распространённого сырья.

Аккумуляторы с нанопорами


В Мэрилендском университете в Колледж-Парке создали нанопористую структуру, каждая ячейка которой работает как крохотный аккумулятор. Такой массив заряжается 12 минут, по ёмкости втрое превосходит литий-ионные аккумуляторы такого же размера и выдерживает около 1 тыс. циклов зарядки.

Генерирование электричества


Энергия кожи


Тут речь идёт не столько об аккумуляторах, сколько о способе получения энергии. Теоретически, используя энергию трения носимого устройства (часов, фитнес-трекера) о кожу, можно генерировать электричество. Если технологию удастся достаточно усовершенствовать, то в будущем в некоторых гаджетах аккумуляторы станут работать просто потому, что вы носите их на теле. Прототип такого наногенератора — золотая плёнка толщиной 50 нанометров, нанесённая на силиконовую подложку, содержащую тысячи крошечных ножек, которые увеличивают трение подложки о кожу. В результате возникает трибоэлектрический эффект.

uBeam — зарядка по воздуху


uBeam — любопытный концепт передачи энергии на мобильное устройство с помощью ультразвука. Зарядное устройство испускает ультразвуковые волны, которые улавливаются приёмником на гаджете и преобразуются в электричество. Судя по всему, в основе изобретения лежит пьезоэлектрический эффект: приёмник резонирует под действием ультразвука, и его колебания генерируют энергию.

Схожим путём пошли и учёные из Лондонского университета королевы Марии. Они создали прототип смартфона, который заряжается просто благодаря внешним шумам, в том числе от голосов людей.

StoreDot



Зарядное устройство StoreDot разработано стартапом, появившимся на базе Тель-Авивского университета. Лабораторный образец смог зарядить аккумулятор Samsung Galaxy 4 за 30 секунд. Сообщается, что устройство создано на базе органических полупроводников, изготовленных из пептидов. В конце 2017 года в продажу должен поступить карманный аккумулятор, способный заряжать смартфоны за пять минут.

Прозрачная солнечная панель



В Alcatel был разработан прототип прозрачной солнечной панели, которая помещается поверх экрана, так что телефон можно заряжать, просто положив на солнце. Конечно, концепт не идеален с точки зрения углов обзора и мощности зарядки. Но идея красивая.

Год спустя, в 2014-м, компания Tag Heuer анонсировала новую версию своего телефона для понтов Tag Heuer Meridiist Infinite, у которого между внешним стеклом и самим дисплеем должна была быть проложена прозрачная солнечная панель. Правда, непонятно, дошло ли дело до производства.

Графеновый аккумулятор. Прорыв в создании устройств хранения энергии

Графеновые аккумуляторы окажут громадное влияние на все сферы повседневной жизни. Для примера, удельная емкость литий-ионного аккумулятора применяемого в настоящее время, составляет 200 Вт/ч на 1 кг веса. Графеновый аккумулятор такого же веса имеет удельную емкость 1000 Вт/ч. Очевидно, что графеновая аккумуляторная батарея установленная, например, в Tesla Model S способна увеличить пробег электромобиля с 334 км до 1013 км на одной подзарядке. Кроме всего прочего такие батареи можно зарядить менее чем за 10 минут. Конечно, чтобы достичь такой скорости заряда необходима мощная зарядная станция, но это уже не такая большая проблема.

 

Графеновый аккумулятор такого же веса как литий-ионный (при 200 Вт/ч на 1 кг веса) имеет удельную емкость 1000 Вт/ч. Такая батарея установленная, например, в Tesla Model S способна увеличить пробег электромобиля с 334 км до 1013 км на одной подзарядке

 

Еще в декабре 2018 года индийская компания Log 9 Materials объявила, что работает над металлическими воздушно-воздушными батареями на основе графена, что в теории может даже привести к появлению электрических транспортных средств, работающих на воде. Металлические воздушные батареи используют металл в качестве анода, воздух (кислород) в качестве катода и воду в качестве электролита. В воздушном катоде батарей используется стержень графена. Поскольку кислород должен использоваться в качестве катода, катодный материал должен быть пористым, чтобы воздух мог проходить, свойство, в котором графен превосходит другие. Согласно Log 9 Materials, графен, используемый в электроде, способен увеличить эффективность батареи в пять раз при стоимости в одну треть.

 

 

 

Новые разработки графеновых аккумуляторов

 

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков. Они считают, что будущее за графеновыми аккумуляторами.

 

Сравнительно недавно Graphenano, компания из Испании, продемонстрировала прототип графен-полимерного аккумулятора обладающего уникальной способностью – требуемое время его заряда в 3 раза меньше, чем для обыденных литий-ионных аккумуляторов. Конечно же успехи этой компании подхлестнули громадный интерес различных производителей, которые стали тотчас предвкушать все выгоды применения таких аккумуляторов.

Эра графеновых аккумуляторов способна кардинальным образом изменить все мировое автомобилестроение.

В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км.  Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей. Графеновые батареи менее громоздкие, чем их литий-ионные аналоги: масса графенового аккумулятора вдвое меньше массы литий-ионного. И что не маловажно, такие батареи не могут взорваться.

 

В конце 2015 года Graphenano открыли завод площадью более 7000 квадратных метров по производству графен-полимерных аккумуляторов в испанском городе Екла, благодаря объединению усилий с группой химиков из Национального университета Кордовы и компанией Grabat Energy. Было создано специальное оборудование для обеспечения 20 сборочных линий на 80 миллионов ячеек. Эти аккумуляторы не будут производить газ и не будут пожароопасными, заявляют в Graphenano, даже короткое замыкание им не будет страшно. Полимер был сертифицирован при сотрудничестве с институтами Декра (Испания) и TUV (Германия).

 

 

 

Графен представляет собой слой атомов углерода толщиной в один атом, расположенный в гексагональной решетке (в виде шестиугольников). Это строительный блок углерода, но графен сам по себе является замечательным веществом, обладающим множеством удивительных свойств, которые постоянно дают ему название «чудо-материал».

Графен - это слой атомов углерода толщиной в один атом, расположенный в гексагональной решетке.

 

 

Как улучшить характеристики существующих аккумуляторов

 

В области аккумуляторов обычные материалы для аккумуляторных электродов (и перспективные) значительно улучшаются при добавлении графена. Графеновая батарея может быть легкой, долговечной и подходящей для накопления энергии большой емкости, а также для сокращения времени зарядки. Это продлит срок службы батареи, что связано с количеством углерода, который нанесен на материал или добавлен к электродам для достижения проводимости, а графен добавляет проводимости, не требуя количества углерода, которое используется в обычных батареях.

 

Графен может улучшить такие свойства батареи, как плотность энергии и форму, различными способами. Так литий-ионные аккумуляторы (и другие типы аккумуляторных батарей) могут быть улучшены путем введения графена в анод аккумулятора и использования проводимости материала и характеристик большой площади поверхности для достижения морфологической оптимизации и производительности.

 

Также было обнаружено, что создание гибридных материалов также может быть полезным для улучшения качества батареи. Например, гибрид катализа оксида ванадия (VO2) и графена может быть использован на литий-ионных катодах и обеспечивает быструю зарядку и разрядку, а также большую стойкость цикла зарядки. В этом случае VO2 обладает высокой энергоемкостью, но плохой электрической проводимостью, что можно решить, используя графен в качестве своего рода структурной «основы», на которой можно присоединить VO2- создавая гибридный материал, который обладает как повышенной емкостью, так и превосходной проводимостью.

 

Исследователи ищут новые типы активного электродного материала, чтобы вывести батареи на новый уровень высокой производительности и долговечности и сделать их более подходящими для больших устройств. Наноструктурированные материалы ионно-литиевых батарей могут обеспечить хорошее решение. По последним данным исследователи из Венского университета и международные ученые разработали новый наноструктурированный анодный материал для ионно-литиевых батарей, который увеличивает емкость и срок службы батарей.

 

2D/3D нанокомпозит на основе смешанного оксида металла и графена, разработанный двумя учеными и их командами, как утверждается, серьезно улучшает электрохимические характеристики литий-ионных аккумуляторов. Основанный на смешанном мезопористом оксиде металла в сочетании с графеном, этот материал может обеспечить новый подход к более эффективному использованию батарей в больших устройствах, таких как электрические или гибридные транспортные средства. Новый электродный материал обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер. Для сравнения, современные литий-ионные аккумуляторы теряют свою эффективность после примерно 1000 циклов зарядки.

 

Устройство графенового аккумулятора. Расщепленный кристалл стремится снова стать объемным. Ученым удается сдерживать двухмерную структуру и заставить работать в виде гальванического элемента. Стабильность зависит от подобранной электронной пары. Устройством аккумулятор напоминает литий-ионные, но вместо графитового слоя внедрен графеновый. Российские исследователи заменили анод оксидом магния. Композиция дешевле, меньше нагревается аккумулятор и уменьшается опасность возгорания.

 

 

Финансовые проблемы реализации научных достижений

 

Проблема создания новых аккумуляторных батарей еще и в том, что сейчас исследованиями в области элементов питания занимается слишком много компаний. Проектов просто огромное количество — от «пенных» и жидких батарей до аккумуляторов с экзотическими соединениями в составе электролита. И явного лидера среди всех этих компаний нет. Особого энтузиазма такая ситуация не вызывает и среди инвесторов, которые не слишком охотно выделяют деньги на новые проекты.

 

А денег требуется много. «Для того, чтобы создать небольшую промышленную линию по производству аккумуляторов, создаваемых по новым технологиям, требуется около $500 млн. И даже, если бы перспективный аккумулятор был создан, перевести научную работу в сферу коммерции не так просто. Разработчики мобильных устройств или производители электромобилей будут тестировать новые батареи годами, прежде, чем принять решение. Инвестиции за это время не окупятся, а компания-разработчик будет убыточной. Ученые утверждают, что наладить промышленную линию стоимостью в $500 млн. сложно, особенно, если бюджет на год составляет $5 млн.

 

И даже в том случае, когда новая технология попадет на рынок, производителю аккумуляторов нового типа придется пережить нелегкий период адаптации и поиска покупателей. Но пока что до этого этапа никто не доходил. Так, компании Leyden Energy и A123 Systems, разработавшие новые, вполне перспективные технологии, так и не вышли на рынок. Им просто не хватило для этого денег. Еще два перспективных «энергетических» стартапа, Seeo и Sakti3, были куплены другими компаниями. Причем суммы этих двух сделок были гораздо ниже того, на что рассчитывали первые инвесторы компаний.

Крупнейшие производители электроники, Samsung, LG и Panasonic, заинтересованы больше в совершенствовании текущих своих продуктов и увеличении числа их функций, чем в получении батарей нового типа. Поэтому пока что продолжается процесс оптимизации Li-Ion батарей, созданных еще в 70-х годах прошлого века. Остается надеяться, что у графеновых аккумуляторов все же получится разорвать порочный круг.

 

Графен обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер.

 

 

Что дальше?

 

Сегодня на исследования графена выделено несколько миллиардов долларов, и по прогнозам ученых, этот материал сможет заменить собою кремний в полупроводниковой промышленности. Графен несомненно перевернет мир технологий, в том числе и созданием новых аккумуляторных батарей в ближайшие годы, не в последнюю очередь еще и потому, что он недорог в производстве, и очень распространен в природе. Каждая из стран имеет его в изобилии.

 

Аккумуляторы на основе графена быстро становятся сопоставимыми по эффективности с традиционными твердотельными аккумуляторами. Они все время продвигаются, и скоро они превзойдут своих твердотельных предшественников. Дополнительные преимущества, связанные с присутствием графена в электродах, могут быть полезны, даже если эффективность не так высока. Для батарей, которые обладают аналогичной эффективностью, графеновые батареи являются идеальным выбором, они начали набирать обороты на коммерческом рынке. Ожидается, что мировой рынок графеновых аккумуляторов к 2022 году достигнет 115 миллионов долларов, увеличившись в среднем на 38,4% в течение прогнозируемого периода с рынком с доходом около 38% ».

 

Шведские исследователи из Chalmers смешивают графен и серу для новых литиево-серных батареи, теоретическая плотность энергии которых примерно в пять раз выше, чем у литий-ионных. Новая идея исследователей - пористый губчатый аэрогель, изготовленный из восстановленного оксида графена, который действует как автономный электрод в элементе батареи и позволяет лучше и более эффективно использовать серу.

 

 

Удивительные свойства графена

 

Графен является самым тонким материалом, известным человеку, толщиной в один атом, а также невероятно прочным - примерно в 200 раз прочнее стали. Кроме того, графен является отличным проводником тепла и электричества и обладает интересными способностями поглощения света. В целом графен характеризуется как материал с наивысшей подвижностью электронов среди всех известных материалов. Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами – таким образом графеновый проводник способен проводить электричество практически без потерь.

Графен  – легкий, он весит всего 0,77 миллиграмма на квадратный метр. Поскольку это один 2D-лист, он имеет самую высокую площадь поверхности из всех материалов.

Листы графена являются гибкими, и фактически графен является наиболее растяжимым кристаллом - вы можете растянуть его до 20% от его первоначального размера, не разбивая его. Наконец, идеальный графен также очень непроницаем, и даже атомы гелия не могут пройти через него.

Он также считается экологически чистым и устойчивым, с неограниченными возможностями для многочисленных применений. Это действительно материал, который может изменить мир с неограниченным потенциалом для интеграции практически в любую отрасль.

Когда листы графена предоставлены сами себе, они будут складываться и образовывать графит, который является наиболее стабильной трехмерной формой углерода при нормальных условиях.

Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами. 

 

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

Создан «вечный» аккумулятор, который можно заряжать раз в неделю

92403

, Текст: Эльяс Касми

Батареи нового типа, в которых используются отрицательные ионы фтора, можно заряжать раз в неделю, а при экономичном использовании гаджетов – еще реже.

Литий больше не нужен

Группа ученых из Калифорнийского технологического университета под руководством лауреата Нобелевской премии 2005 г. по химии Роберта Граббса (Robert Grabbs) разработали новый вид аккумуляторных батарей, в которых в качестве основного вещества используется не литий, а фторид (химическое соединение фтора с другими элементами). По словам ученых, использование этого материала в мобильных аккумуляторах позволит заряжать смартфоны в восемь раз реже, чем сейчас. Результаты своих исследований они отразили в статье, опубликованной в журнале Science.

В современных литий-ионных АКБ, применяемых в портативной электронике, в качестве так называемого «химического поршня» для проведения электрического заряда через контур используются положительно заряженные катионы лития Li2+. Когда аккумулятор полностью заряжен, катионы находятся в аноде и при подключении нагрузки (при включении смартфона, к примеру) начинают перетекать в анод, тем самым генерируя электрический ток. Это классический принцип работы элементов питания на литии, но Роберт Граббс с командой ученых пошли совсем другим путем.

Новые старые технологии

Химик Граббс в своей работе использовал достижения ученых, еще в 1970-х годах доказавших, что «химический поршень» может работать в обратном направлении – нужно лишь использовать отрицательно заряженные ионы, в том числе ионы фтора (F-). Но на тот момент этот процесс происходил только при нагреве аккумуляторных батарей до 150 градусов Цельсия, что делало технологию неприменимой в потребительской электронике.

В будущем этот до боли знакомый символ мы будем видеть очень редко

Роберт Граббс нашел способ обхода этого ограничения: он разработал вещество, растворяющее электролит и позволяющее анионам (отрицательно заряженным ионам) фтора смешиваться с электронами при комнатной температуре.

Технология за авторством Граббса и его коллег пока находится на ранней стадии разработки, и о серийном производстве аккумуляторов нового типа речь не идет. Тем не менее, ученые подчеркивают высокую степень значимости их работы для дальнейшего развития элементов питания мобильных устройств. К основным преимуществам АКБ на основе фторида ученые отнесли, помимо длительного удержания заряда, еще долговечность и надежность, что указывает на замедленные процессы деградации по сравнению с литий-ионными батареями и на низкую вероятность воспламенения при деформации или механическом воздействии. Для элементов питания мобильных устройств это очень важно – напомним, что всего два года назад компания Samsung выпустила смартфон Galaxy Note 7, ставший самым опасным за всю историю мобильных средств связи – его литиевый аккумулятор содержал заводской дефект, приводивший к спонтанным возгораниям или даже взрывам. Существуют официально зафиксированные случаи получения травм и материального ущерба от сгоревшего Note 7.

Альтернатива фторидным аккумуляторам

Роберт Граббс – не единственный, кто стремится сделать аккумуляторы надежнее и долговечнее. В этом направлении работают многие крупные компании: к примеру, Microsoft в 2015 г. разработала прототип программно-конфигурируемой системы аккумуляторов, в состав которой входили несколько небольших АКБ, каждая из которых по своим химическим свойствам лучше подходит для решения той или иной задачи. Годом ранее ученые из США усовершенствовали традиционные литиевые батареи за счет своего рода защитного кожуха, окутывающего анод и представляющего собой сетку толщиной 20 нм из углеродных куполов. Решение позволило повысить надежность аккумуляторов и увеличить их емкость.

Но дальше всех зашли китайцы – пока весь остальной мир разрабатывает технологии, они уже перешли непосредственно к производству элементов питания нового типа. Cтартап Qing Tao начал выпуск твердотельных аккумуляторов, по всем основным параметрам превосходящих литиевые. Они легче, у них более высокая плотность энергии, и они не так зависят от изменения температуры воздуха. В производство твердотельных АКБ китайцы уже вложили €126 млн.



IBM создала емкий, безопасный и дешевый аккумулятор со сверхбыстрой зарядкой

5616

, Текст: Дмитрий Степанов

Исследовательское подразделение IBM разработало аккумулятор нового типа. Он дешевле существующих литий-ионных аналогов, менее огнеопасны и заряжаются до 80% за пять минут, а компоненты для их производства можно получить из самой обычной морской воды.

Аккумуляторы без тяжелых металлов

Специалисты IBM Research разработали аккумулятор из новых материалов, который по ряду характеристик значительно превосходит широко распространенные сегодня литий-ионные батареи. Об этом говорится в сообщении, размещенном в блоге исследовательского подразделения компании (IBM Research) на ее официальном сайте.

В сегодняшних аккумуляторах, которые используются в ряде устройств: от фитнес-браслетов и смартфонов до электромобилей, часто применяются тяжелые металлы, в частности кобальт и никель. Например, в литий-ионных аккумуляторах катод (отрицательный электрод) может выполняться из кобальтата лития или никелата лития. Сами по себе эти металлы могут представлять угрозу как здоровью человека, так и окружающей среде. Кроме того, их запасы ограничены, а при добыче кобальта, по данным Financial Times, используются детский труд.

Новая технология IBM предполагает создание аккумулятора на базе трех новых материалов, среди которых тяжелых металлов нет. Химический состав материалов, из которых выполнены анод, катод и жидкий электролит, исследователи не раскрывают, однако уверяют, что необходимые материалы могут быть получены из обыкновенной морской воды и то, что они значительно дешевле используемых в современных литий-ионных батареях.

Преимущества новой технологии

По словам специалистов IBM Research их разработка превосходит литий-ионную технологию по многим важным параметров. Так, если верить ученым, их аккумулятор сможет заряжаться до уровня 80% за пять минут, при этом вероятность воспламенения такого устройства значительно ниже по сравнению с литий-ионными аналогами. У последних меньшая температура возгорания.

ibmresearch600.jpg

Исследователь, работающий с системой дифференциальной электрохимической масс-спектроскопии в IBM Research, которая измеряет количество газа, выделившегося из элемента батареи во время зарядки/разрядки

Энергетическая плотность новинки сопоставима с передовыми образцами литий-ионных аккумуляторов (более 800 Вт*ч/л), а ее энергоэффективность превышает 90%.

Кроме того, исследователи утверждают, что проведенные ими тесты показали возможность применения этой технологии при изготовлении аккумуляторов с весьма продолжительным сроком службы, однако не приводят каких-либо конкретных данных на этот счет.

Сферы применения аккумуляторов IBM

Исследователи полагают, что продукция на основе разработанной ими технологии может найти применение в энергетике, автомобиле- и авиастроении.

Несмотря на то, что исследования находятся на ранней стадии, IBM Research заключила контракты на совместную разработку нового поколения аккумуляторов и инфраструктуры для их совершенствования и производства с Mercedes-Benz Research, Central Glass (производитель электролитов) и Sidus (производитель аккумуляторных батарей).

Не без помощи искусственного интеллекта

IBM Research также сообщает, что в своей работе команда использует технологию искусственного интеллекта (ИИ), называемую семантическим обогащением. Она применяется для дальнейшего улучшения характеристик батареи путем выявления наиболее подходящих и безопасных материалов.

Альтернативные разработки

Существуют и другие технологии, способные заменить собой литиевые аккумуляторы и положить конец их далеко не самым экологичным и этичным производству и утилизации.

В декабре 2018 г. CNews писал о том, что ученые Иллинойского университета в Чикаго разработали новую технологию производства аккумуляторных батарей для мобильных устройств, в основе которой лежит принцип использования неупорядоченных частиц оксида магния и непосредственно магниевого анода.

Еще одна группа американских ученых, на этот раз из Калифорнийского технологического университета, создала аккумулятор на основе фторидов – химических соединений фтора с другими элементами таблицы Менделеева. Подобные АКБ в теории характеризуются способностью держать заряд до восьми раз дольше в сравнении с литий-ионными и литий-полимерными. Опять же, они намного безопаснее оных ввиду неподверженности влиянию повышенной температуры окружающей среды или нагреву во время подзарядки.

В ноябре 2018 г. стало известно, что в Китае стартовало производство аккумуляторов с твердым электролитом, которые в обозримом будущем могут стать частью мобильной техники и транспортных средств. Предполагалось, что они придут на смену литий-ионным батареям за счет большей компактности и безопасности.



Российские ученые нашли "зеленую" замену для литиевых аккумуляторов

МОСКВА, 3 июн – РИА Новости. Химики из России открыли особое органическое вещество, которое можно использовать в качестве замены для металлов, из которых сейчас изготовляют катод аккумуляторов. Это открытие позволит создать полностью "зеленую" замену для современных литиевых батарей, пишут ученые в Journal of Material Chemistry A.

Современные аккумуляторы состоят из трех частей – катода, положительного полюса и источника энергии, анода, отрицательного полюса и "изымателя" этой энергии, и электролита, позволяющего ионам путешествовать между катодом и анодом. Емкость и мощность батарей зависят от состава катода, а их долговечность – от того, как сильно разрушается материал электролита и катода при циклах заряда и разряда.

Органические электролиты уже широко используются в производстве батарей, однако материал катода оставался металлическим. Как правило, его изготавливают из кобальта или соединений марганца, что делает такие источники питания дорогими и потенциально опасными для окружающей среды.

Как передает пресс-служба "Сколтеха", Обрезков и его коллеги уже много лет пытаются найти органическую замену для материалов, используемых при изготовлении катодов в литий-ионных и иных типах аккумуляторов. За последние годы появилось несколько подобных альтернатив, однако у всех них есть большие недостатки, мешавшие им решить эту проблему.

Российские химики попытались решить эту проблему, синтезируя различные производные политрифениламина и полимерные молекулы на их основе, замеряя свойства подобных соединений и сравнивая подобные показатели между собой.

Результатом этих опытов стало создание вещества под названием PDPPD, чья удельная емкость была примерно в два раза выше, чем у простого политрифениламина. Этот прирост, как объясняют исследователи, был связан с тем, что полимеризация сделала это соединение необычно стабильным с электрохимической точки зрения.

Его работу ученые проверили, создав не только литий-ионный аккумулятор с подобным органическим катодом, но и батареи на базе соединений натрия и калия. Как показали первые опыты с ними, они потеряли меньше четверти емкости при пяти сотнях циклов разряда и заряда, причем при этом подобные батареи могли разряжаться и заряжаться с рекордно высокой скоростью.

С другой стороны, ученые признают, что у их батарей пока есть несколько больших недостатков, способных сильно ограничить их применение. К примеру, он крайне плохо переносит большие напряжения, что химики связывают с тем, что электролит – смесь из соединений лития, карбоната этилена и деметилкарбоната — становится нестабильным при достижении отметки в 4,2 Вольт.

Его замена, как предполагают исследователи, поможет подобным батареям стать еще более емкими и быстрыми в работе, что критически важно для создания дешевых, быстрых и долговечных электромобилей.

Новые виды аккумуляторов приходят на смену литий-ионным батареям

Экология потребления.Наука и техника: Будущее электротранспорта во многом зависит от совершенствования аккумуляторов — они должны весить меньше, заряжаться быстрее и при этом производить больше энергии.

Будущее электротранспорта во многом зависит от совершенствования аккумуляторов — они должны весить меньше, заряжаться быстрее и при этом производить больше энергии. Ученые уже добились некоторых результатов. Команда инженеров создала литий-кислородные батареи, которые не растрачивают энергию впустую и могут служить десятилетиями. А австралийский ученый представил ионистор на основе графена, который может заряжаться миллион раз без потери эффективности.

Литий-кислородные аккумуляторы мало весят и производят много энергии и могли бы стать идеальными комплектующими для электромобилей. Но у таких батарей есть существенный недостаток — они быстро изнашиваются и выделяют слишком много энергии в виде тепла впустую. Новая разработка ученых из МТИ, Аргонской национальной лаборатории и Пекинского университета обещает решить эту проблему.

Созданные командой инженеров литий-кислородные аккумуляторы используют наночастицы, в которых содержится литий и кислород. При этом кислород при изменении состояний сохраняется внутри частицы и не возвращается в газовую фазу. Это отличает разработку от литий-воздушных батарей, которые получают кислород из воздуха и выпускают его в атмосферу во время обратной реакции. Новый подход позволяет сократить потерю энергии (величина электрического напряжения сокращается почти в 5 раз) и увеличить срок службы батареи.

Литий-кислородная технология также хорошо адаптирована к реальным условиям, в отличие от литий-воздушных систем, которые портятся при контакте с влагой и CO2. Кроме того, аккумуляторы на литии и кислороде защищены от избыточной зарядки — как только энергии становится слишком много, батарея переключается на другой тип реакции.

Ученые провели 120 циклов заряда-разряда, при этом производительность снизилась лишь на 2%.

Пока что ученые создали лишь опытный образец аккумулятора, но в течение года они намерены разработать прототип. Для этого не нужны дорогие материалы, а производство во многом схоже с производством традиционных литий-ионных батарей. Если проект будет реализован, то в ближайшем будущем электромобили будут сохранять в два раза больше энергии при той же массе.

 

Инженер из Технологического университета Суинберна в Австралии решил другую проблему аккумуляторов — скорость их подзарядки. Разработанный им ионистор заряжается практически мгновенно и может использоваться в течение многих лет без потери эффективности.

Хан Линь использовал графен — один из самых прочных материалов на сегодняшний день. За счет структуры, напоминающей соты, графен обладает большой площадью поверхности для хранения энергии. Ученый напечатал графеновые пластины на 3D-принтере — такой способ производства также позволяет сократить затраты и нарастить масштабы.

Созданный ученым ионистор производит столько же энергии на килограмм веса, сколько и литий-ионный аккумуляторы, но заряжается за несколько секунд. При этом вместо лития в нем используется графен, который стоит намного дешевле. По словам Хана Линя, ионистор может проходить миллионы циклов зарядки без потери качества.

Сфера производства аккумуляторов не стоит на месте. Братья Крайзель из Австрии создали новый тип батарей, которые весят почти в два раза меньше аккумуляторов в Tesla Model S.

Норвежские ученые из Университета Осло изобрели аккумулятор, который можно полностью зарядить за полсекунды. Однако их разработка предназначена для городского общественного транспорта, который регулярно делает остановки — на каждой из них автобус будет подзаряжаться и энергии хватит, чтобы добраться до следующей остановки.

Ученые Калифорнийского университета в Ирвайне приблизились к созданию вечной батареи. Они разработали аккумулятор из нанопроволоки, который можно перезаряжать сотни тысяч раз.

А инженеры Университета Райса сумели создать литий-ионный аккумулятор, работающий при температуре 150 градусов Цельсия без потери эффективности. опубликовано econet.ru 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *