Блокиратор микрофона — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 ноября 2018; проверки требуют 11 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 ноября 2018; проверки требуют 11 правок.Блокиратор Микрофона (англ. Microphone blocker) это устройство для предотвращения прослушивания, аксессуар для смартфона, ноутбука, КПК или подобных устройств, которое предназначено для отключения встроенного микрофона, также есть программа защиты от шпионских программ для Android с одноименным названием, которая отключает микрофон. Блокиратор микрофона (microphone blocker) может также » mic blocker» или «mic lock». Физически блокиратор микрофона-это заглушка, которая вставляется в гнездо внешнего микрофона мобильного устройства.[1] Блокировка отключает сигнал от встроенного микрофона, обманывая устройство, думая, что внешний микрофон уже подключен
Блокиратор микрофона это недорогой, простой для использования аксессуар, который обеспечивает защиту от прослушки мобильного телефона,аудио взлома. Есть множество доступных шпионских программ, которые могут удаленно включить микрофон мобильного устройства , подавляющее большинство мобильных устройств не имеет внутренних аппаратных средств защиты предотвращения подслушивания.
Анти-шпионское программное обеспечение — не может полностью гарантировать, что будет отключать и блокировать микрофон , если устройство подвергается нападению одного из самых распространённых интернет-угроз — шпионских программ, вредоносных программ, поскольку программы нападения постоянно меняются и совершенствуются.
Просочились документы, опубликованные «Викиликс», под кодовым названием Хранилище 7и от 2013-2016, детализирующие возможности Центрального разведывательного управления США (ЦРУ) для осуществления электронного наблюдения и кибервойны, в том числе способность к взлому операционных систем большинства смартфонов, превращая их в постоянные подслушивающие устройства.[2][3][4]
Новый метод доступа к данным, обнаружен группой исследователей из Израильского Университета Бен-Гурион ;исследовательского центра кибербезопасности .Он позволяет извлекать данные с через колонки и наушники компьютера.[5] Форбс опубликовал, что исследователи нашли способ воссоздать информацию на дисплее, используя микрофон с 96.5% точностью [6]
Миллионы смартфонов может быть уязвимым для взлома с использованием акселерометров.[7][8]
- ↑ 1 2 How to rip the mics out of you macbook and iphone
- ↑ the CIA Can Hack Your Phone, PC, and TV (Says WikiLeaks), WIRED
- ↑ Wikileaks reveals details of CIA’s hacks of Android, iPhone Windows, Linux, MacOS, and even Samsung TVs, Computing, 7 March 2017
- ↑ WikiLeaks: CIA could hack into phones,to turn them into permanent listening devices
- ↑ Sputniknews, New Hacking Technique.
- ↑ Forbes, Now hackers can spy on you by listening to your screen
- ↑ Could Be Vulnerable to Hacking Via Sound Waves
- ↑ IEEE Spectrum, Smartphone accelerometers can be fooled by Sound Waves
Микрофон — Википедия. Что такое Микрофон
Микрофо́н (от греч. μικρός — маленький, φωνη — голос) — электроакустический прибор, преобразующий акустические колебания в электрический сигнал.
История
В телефонном аппарате Белла, микрофон, как отдельный узел, отсутствовал, его функцию выполнял электромагнитный капсюль, совмещавший в себе функции микрофона и телефонного капсюля. Первым устройством, использующимся только в качестве микрофона стал угольный микрофон Эдисона, об изобретении которого также независимо заявляли Генрих Махальский в 1878 году и Павел Голубицкий в 1883 году. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.
Конденсаторный микрофон был изобретён инженером Bell Labs Эдуардом Венте (Edward Christopher Wente) в 1916 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.
Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами. Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Эрлахом (Gerwin Erlach) и Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (около 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной звукозаписи благодаря чрезвычайно широким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли ома), что значительно осложняет проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют бо́льшие размеры и массу по сравнению со всеми остальными типами.
Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.
В 1931 году американские инженеры Венте и Тёрэс (Albert L. Thuras) изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки ом и сотни килоом), мог быть изготовлен в меньших размерах и является обратимым. Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи не только в студийных условиях. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).
Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.
Электретный микрофон, изобретённый японским учёным Ёгути в начале 1920-х годов, по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаом и выше) заставляло применять исключительно ламповые схемы. Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.
Устройство микрофона
Принцип действия микрофона с подвижной катушкойПринцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.
Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).
Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.
Классификация микрофонов
Типы микрофонов по принципу действия
Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год):
Тип микрофона | Диапазон воспринимаемых частот, Гц | Неравномерность частотной характеристики, дБ | Осевая чувствительность на частоте 1 000 Гц, мВ/Па |
---|---|---|---|
Угольный | 300—3400 | 20 | 1000 |
Электродинамический катушечного типа | 100—10 000 (1 класса) 30—15 000 (высшего класса) | 12 | 0,5 ~1,0 |
Электродинамический ленточного типа | 50—10 000 (1 класса) 70—15 000 (высшего класса) | 10 | 1 1,5 |
Конденсаторный | 30—15 000 | 5 | 5 |
Пьезоэлектрический | 100—5000 | 15 | 50 |
Электромагнитный | 300—5000 | 20 | 5 |
Функциональные виды микрофонов
- Студийный микрофон
- Сценический микрофон
- Измерительный микрофон («искусственное ухо»)
- Микрофонный капсюль для телефонных аппаратов
- Микрофон для применения в радиогарнитурах
- Микрофон для скрытого ношения
- Ларингофон
- Гидрофон
Характеристики микрофонов
Схематическое обозначение микрофонаМикрофоны любого типа оцениваются следующими характеристиками:
- чувствительность
- амплитудно-частотная характеристика
- акустическая характеристика микрофона
- характеристика направленности
- уровень собственных шумов микрофона
Чувствительность
Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0, как правило, в свободном звуковом поле[1], то есть при отсутствии влияния отражающих поверхностей[2]. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона это направление называется осевой чувствительностью:
M0 = U/P0 (мВ/Па).
Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.
Таким образом, микрофон с чувствительностью −75 дБ менее чувствителен, чем −54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для ориентировки : −54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.
Частотная характеристика чувствительности
ЧХЧ микрофонов Октава МК-319 и Shure SM58Частотная характеристика чувствительности (ЧХЧ) — это зависимость осевой чувствительности микрофона от частоты звуковых колебаний в свободном поле. Неравномерность ЧХЧ, как правило, измеряют в децибелах как двадцать логарифмов (по основанию 10) отношения чувствительности микрофона на определённой частоте к чувствительности на опорной частоте (в основном 1 кГц).
Акустическая характеристика
Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а, следовательно, и характеристики направленности, отличают три типа микрофонов как приёмников звука: приёмники давления; градиента давления; комбинированные.
Характеристика направленности
приёмники давления | |
Ненаправленный | |
приёмники градиента давления | |
Двунаправленный «Восьмёрка» | |
комбинированные | |
Кардиоида | |
Гиперкардиоида |
Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:
- φ = Mα/M0
Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, то есть φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.
Ненаправленные микрофоны
В ненаправленных микрофонах — приёмниках давления — сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. Если размеры соизмеримы с длиной волны, тогда за счёт дифракции звуковых волн микрофон приобретает направленность. На частотах от 5000 Гц и ниже такие микрофоны являются ненаправленными. Преимуществом ненаправленных микрофонов является простота конструкции, расчёта капсюля и стабильности характеристик с течением времени. Ненаправленные капсюли часто используют в составе измерительных микрофонов, в быту могут быть использованы для записи разговора людей, сидящих за круглым столом.
Микрофоны двустороннего направления
В микрофонах — приёмниках градиента давления — сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмёрки.
Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга. Также их применение удобно в студиях звукозаписи при записи голоса с одновременной игрой на инструментах — так как они хорошо отсекают звуки, приходящие несоосно с основным, а также при некоторых способах записи стереозвука (технология Блюмлейна).
Микрофоны одностороннего направления
Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих ещё меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.
Эти микрофоны имеют определённые преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами, микрофон не воспринимает.
Уровень шумов
Эквивалентный уровень шума (equivalent noise). В соответствии с международными стандартами собственный уровень шума микрофона определяется как уровень звукового давления, который создаёт напряжение на выходе микрофона, равное напряжению, возникающему в нём только за счёт собственных шумов при отсутствии звукового сигнала. Он может быть рассчитан по формуле
LpЭ=20lg Uш/Sρ0,
где:
Uш — квадратный корень из разности квадратов значений напряжения на выходе испытательного стенда по ГОСТ 16123-88 (IEC 60268-4), измеренное при подключенном микрофоне и при замене его на резистор – эквивалент модуля сопротивления испытуемого микрофона,
S — чувствительность микрофона на частоте 1000 Гц, ρ0=2,10−5Па.
Способы измерения этого параметра несколько отличаются в разных стандартах, поэтому обычно в современных каталогах приводятся два значения эквивалентного уровня шумов: по стандарту DIN 45 412 (IEC 60268-1) и по стандарту DIN 45 405 (CCIR 468-3). В первом случае при измерениях используется взвешивающая стандартная кривая А. Во втором случае используется другая форма взвешивающей кривой (психометрическая кривая 468) и отличия в методике, более подходящей для измерительных микрофонов.
Защита для микрофонов
Для микрофонов существуют различные типы защиты: накладки из полиуретана, поп-фильтры, звукозаглушающие боксы и капсюли (решётки).
Микрофон со снятой защитой.
«Дохлая кошка» и «дохлый котёнок». Дохлая кошка закрывает стереомикрофон для DSLR-камеры. Названия отличаются из-за разных размеров.
Микрофонная решётка (капсюль), защищающая микрофон от ветра и тому подобного.
Типы подключения
Проводные микрофоны с неразъёмным кабелем. Для цветовой маркировки перемотаны изолентойБольшинство микрофонов подключается к звуковому оборудованию посредством кабеля. Кабели могут быть либо , либо разъёмными. Последние применяются чаще всего. Долгие годы во время выступления на сцене, конференциях и тому подобном применялись именно проводные микрофоны, так как они неприхотливы и просты в эксплуатации. Профессиональные микрофоны имеют трёхпроводное балансное подключение (разъёмы XLR) для снижения наводок и помех. Для работы конденсаторных микрофонов звуковое оборудование должно иметь режим фантомного питания.
Также существуют более сложные устройства — радиомикрофоны (беспроводные микрофоны, радиосистемы), — которые составляют конкуренцию проводным микрофонам, хотя и не вытесняют их совсем (они также применяются для выступления на сцене, на конференциях). Внутри такого микрофона находится радиопередатчик, передающий по радио звуки на расположенный поблизости радиоприёмник (ресивер) через внутреннюю антенну (у некоторых беспроводных микрофонов также встречается внешняя антенна; у ресивера обязательно имеется внешняя антенна). Рабочая частота ресивера строго соответствует рабочей частоте передатчика микрофона (рабочая частота измеряется в мегагерцах (МГц, MHz) и может достигать нескольких сотен единиц — это УКВ-радиосвязь (или FM; иногда в техническом описании указано «FM wireless microphone»)). Приёмник подключается к звуковому оборудованию посредством кабеля, сам же питается от электросети.
Главное удобство радиомикрофонов в том, что они в отличие от проводных имеют хотя и ограниченную мощностью передатчика, но бо́льшую свободу передвижения. Недостаток — относительно частая разрядка элементов питания (аккумуляторов)[3].
Радиомикрофоны бывают как бытового, так и профессионального уровня. Бытовые обычно работают по принципу «plug and play» («включи и работай») и имеют только настройки выходной громкости. У радиосистем профессиональных серий на ресивере и самом микрофоне можно установить желаемые настройки сигнала для каждого конкретного микрофона (иные названия: калибровка, отстройка), что позволяет одному ресиверу обслуживать иногда сразу 10 и более радиомикрофонов, кроме того, качество сигнала и передаваемых звуков у них гораздо выше, нежели у бытовых, поэтому профессиональные радиомикрофоны так хорошо себя зарекомендовали на концертах. Также бывают цифровые микрофонные радиосистемы из тех же профессиональных серий.
Наиболее известными производителями профессиональных радиомикрофонов являются Sennheiser, Beyerdynamic (Германия) и Shure (США)[источник не указан 1270 дней].
На фото для примера показан радиомикрофон «Nady DKW-Duo». Когда в концерте участвует несколько радиомикрофонов, то для цветовой маркировки их обычно перематывают изолентой (как на фото), поскольку они идентичны по виду (если одного типа и серии)[4].
Радиомикрофон со специальным радиоприёмникомСм. также
Примечания
Литература
- Микрофон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Микрофон // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981.
- Сапожков М. А. Электроакустика. Учебник для вузов. — М.: «Связь», 1978. — 272 с. — 30 000 экз.
- Сидоров И. Н., Димитров А. А. Микрофоны и телефоны. — «Радио и связь», 1993. — 152 с. — (Массовая радиобиблиотека; Вып. 1197). — 20 000 экз. — ISBN 5-256-01072-7, ISBN 978-5-256-01072-0.
- Фурдуев В. В. Акустические основы вещания. — М.: Государственное издательство литературы по вопросам связи и радио, 1960.
- Дольник А. Г., Эфрусси М. М. Микрофоны. — 2 изд.. — М.: Энергия, 1967.
- Б. Я. Меерзон. Основы звукорежиссуры и оборудование студий звукозаписи. — 2-е изд.. — М.: Гуманитарный институт телевидения и радиовещания имени М.А. Литовчина, 2012. — С. 80—81. — 2 с. — ISBN 978-5-942237-029-9.
- Нисбетт А. Применение микрофонов. — М.: Искусство, 1981. — 173 с. — 16 000 экз.
Ссылки
Микрофон — Википедия
Микрофо́н (от греч. μικρός — маленький, φωνη — голос) — электроакустический прибор, преобразующий акустические колебания в электрический сигнал.
История
В телефонном аппарате Белла, микрофон, как отдельный узел, отсутствовал, его функцию выполнял электромагнитный капсюль, совмещавший в себе функции микрофона и телефонного капсюля. Первым устройством, использующимся только в качестве микрофона стал угольный микрофон Эдисона, об изобретении которого также независимо заявляли Генрих Махальский в 1878 году и Павел Голубицкий в 1883 году. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.
Конденсаторный микрофон был изобретён инженером Bell Labs Эдуардом Венте (Edward Christopher Wente) в 1916 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.
Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами. Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Эрлахом (Gerwin Erlach) и Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (около 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной звукозаписи благодаря чрезвычайно широким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли ома), что значительно осложняет проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют бо́льшие размеры и массу по сравнению со всеми остальными типами.
Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.
В 1931 году американские инженеры Венте и Тёрэс (Albert L. Thuras) изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки ом и сотни килоом), мог быть изготовлен в меньших размерах и является обратимым. Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи не только в студийных условиях. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).
Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.
Электретный микрофон, изобретённый японским учёным Ёгути в начале 1920-х годов, по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаом и выше) заставляло применять исключительно ламповые схемы. Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.
Устройство микрофона
Принцип действия микрофона с подвижной катушкойПринцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.
Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).
Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.
Классификация микрофонов
Типы микрофонов по принципу действия
Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год):
Тип микрофона | Диапазон воспринимаемых частот, Гц | Неравномерность частотной характеристики, дБ | Осевая чувствительность на частоте 1 000 Гц, мВ/Па |
---|---|---|---|
Угольный | 300—3400 | 20 | 1000 |
Электродинамический катушечного типа | 100—10 000 (1 класса) 30—15 000 (высшего класса) | 12 | 0,5 ~1,0 |
Электродинамический ленточного типа | 50—10 000 (1 класса) 70—15 000 (высшего класса) | 10 | 1 1,5 |
Конденсаторный | 30—15 000 | 5 | 5 |
Пьезоэлектрический | 100—5000 | 15 | 50 |
Электромагнитный | 300—5000 | 20 | 5 |
Функциональные виды микрофонов
- Студийный микрофон
- Сценический микрофон
- Измерительный микрофон («искусственное ухо»)
- Микрофонный капсюль для телефонных аппаратов
- Микрофон для применения в радиогарнитурах
- Микрофон для скрытого ношения
- Ларингофон
- Гидрофон
Характеристики микрофонов
Схематическое обозначение микрофонаМикрофоны любого типа оцениваются следующими характеристиками:
- чувствительность
- частотная характеристика чувствительности
- акустическая характеристика микрофона
- характеристика направленности
- уровень собственных шумов микрофона
Чувствительность
Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0, как правило, в свободном звуковом поле[1], то есть при отсутствии влияния отражающих поверхностей[2]. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона это направление называется осевой чувствительностью:
M0 = U/P0 (мВ/Па).
Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.
Таким образом, микрофон с чувствительностью −75 дБ менее чувствителен, чем −54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для ориентировки : −54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.
Частотная характеристика чувствительности
ЧХЧ микрофонов Октава МК-319 и Shure SM58Частотная характеристика чувствительности (ЧХЧ) — это зависимость осевой чувствительности микрофона от частоты звуковых колебаний в свободном поле. Неравномерность ЧХЧ, как правило, измеряют в децибелах как двадцать логарифмов (по основанию 10) отношения чувствительности микрофона на определённой частоте к чувствительности на опорной частоте (в основном 1 кГц).
Акустическая характеристика
Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а, следовательно, и характеристики направленности, отличают три типа микрофонов как приёмников звука: приёмники давления; градиента давления; комбинированные.
Характеристика направленности
приёмники давления | |
Ненаправленный | |
приёмники градиента давления | |
Двунаправленный «Восьмёрка» | |
комбинированные | |
Кардиоида | |
Гиперкардиоида |
Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:
- φ = Mα/M0
Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, то есть φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.
Ненаправленные микрофоны
В ненаправленных микрофонах — приёмниках давления — сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. Если размеры соизмеримы с длиной волны, тогда за счёт дифракции звуковых волн микрофон приобретает направленность. На частотах от 5000 Гц и ниже такие микрофоны являются ненаправленными. Преимуществом ненаправленных микрофонов является простота конструкции, расчёта капсюля и стабильности характеристик с течением времени. Ненаправленные капсюли часто используют в составе измерительных микрофонов, в быту могут быть использованы для записи разговора людей, сидящих за круглым столом.
Микрофоны двустороннего направления
В микрофонах — приёмниках градиента давления — сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмёрки.
Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга. Также их применение удобно в студиях звукозаписи при записи голоса с одновременной игрой на инструментах — так как они хорошо отсекают звуки, приходящие несоосно с основным, а также при некоторых способах записи стереозвука (технология Блюмлейна).
Микрофоны одностороннего направления
Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих ещё меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.
Эти микрофоны имеют определённые преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами, микрофон не воспринимает.
Уровень шумов
Эквивалентный уровень шума (equivalent noise). В соответствии с международными стандартами собственный уровень шума микрофона определяется как уровень звукового давления, который создаёт напряжение на выходе микрофона, равное напряжению, возникающему в нём только за счёт собственных шумов при отсутствии звукового сигнала. Он может быть рассчитан по формуле
LpЭ=20lg Uш/Sρ0,
где:
Uш — квадратный корень из разности квадратов значений напряжения на выходе испытательного стенда по ГОСТ 16123-88 (IEC 60268-4), измеренное при подключенном микрофоне и при замене его на резистор – эквивалент модуля сопротивления испытуемого микрофона,
S — чувствительность микрофона на частоте 1000 Гц, ρ0=2,10−5Па.
Способы измерения этого параметра несколько отличаются в разных стандартах, поэтому обычно в современных каталогах приводятся два значения эквивалентного уровня шумов: по стандарту DIN 45 412 (IEC 60268-1) и по стандарту DIN 45 405 (CCIR 468-3). В первом случае при измерениях используется взвешивающая стандартная кривая А. Во втором случае используется другая форма взвешивающей кривой (психометрическая кривая 468) и отличия в методике, более подходящей для измерительных микрофонов.
Защита для микрофонов
Для микрофонов существуют различные типы защиты: накладки из полиуретана, поп-фильтры, звукозаглушающие боксы и капсюли (решётки).
Микрофон со снятой ветрозащитой.
«Дохлая кошка» и «дохлый котёнок». Такая ветрозащита эффективно защищает стереомикрофон для DSLR-камеры. Названия отличаются из-за разных размеров.
Микрофонная решётка («корзина»), защищающая капсюль микрофона от ветра (задувания).
Типы подключения
Проводные микрофоны с неразъёмным кабелем. Для цветовой маркировки перемотаны изолентойБольшинство микрофонов подключается к звуковому оборудованию посредством кабеля. Кабели могут быть либо , либо разъёмными. Последние применяются чаще всего. Долгие годы во время выступления на сцене, конференциях и тому подобном применялись именно проводные микрофоны, так как они неприхотливы и просты в эксплуатации. Профессиональные микрофоны имеют трёхпроводное балансное подключение (разъёмы XLR) для снижения наводок и помех. Для работы конденсаторных микрофонов звуковое оборудование должно иметь режим фантомного питания.
Также существуют более сложные устройства — радиомикрофоны (беспроводные микрофоны, радиосистемы), — которые составляют конкуренцию проводным микрофонам, хотя и не вытесняют их совсем (они также применяются для выступления на сцене, на конференциях). Внутри такого микрофона находится радиопередатчик, передающий по радио звуки на расположенный поблизости радиоприёмник (ресивер) через внутреннюю антенну (у некоторых беспроводных микрофонов также встречается внешняя антенна; у ресивера обязательно имеется внешняя антенна). Рабочая частота ресивера строго соответствует рабочей частоте передатчика микрофона (рабочая частота измеряется в мегагерцах (МГц, MHz) и может достигать нескольких сотен единиц — это УКВ-радиосвязь (или FM; иногда в техническом описании указано «FM wireless microphone»)). Приёмник подключается к звуковому оборудованию посредством кабеля, сам же питается от электросети.
Главное удобство радиомикрофонов в том, что они в отличие от проводных имеют хотя и ограниченную мощностью передатчика, но бо́льшую свободу передвижения. Недостаток — относительно частая разрядка элементов питания (аккумуляторов)[3].
Радиомикрофоны бывают как бытового, так и профессионального уровня. Бытовые обычно работают по принципу «plug and play» («включи и работай») и имеют только настройки выходной громкости. У радиосистем профессиональных серий на ресивере и самом микрофоне можно установить желаемые настройки сигнала для каждого конкретного микрофона (иные названия: калибровка, отстройка), что позволяет одному ресиверу обслуживать иногда сразу 10 и более радиомикрофонов, кроме того, качество сигнала и передаваемых звуков у них гораздо выше, нежели у бытовых, поэтому профессиональные радиомикрофоны так хорошо себя зарекомендовали на концертах. Также бывают цифровые микрофонные радиосистемы из тех же профессиональных серий.
Наиболее известными производителями профессиональных радиомикрофонов являются Sennheiser, Beyerdynamic (Германия) и Shure (США)[источник не указан 1586 дней].
На фото для примера показан радиомикрофон «Nady DKW-Duo». Когда в концерте участвует несколько радиомикрофонов, то для цветовой маркировки их обычно перематывают изолентой (как на фото), поскольку они идентичны по виду (если одного типа и серии)[4].
Радиомикрофон со специальным радиоприёмникомСм. также
Примечания
Литература
- Микрофон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Микрофон // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- Сапожков М. А. Электроакустика. Учебник для вузов. — М.: «Связь», 1978. — 272 с. — 30 000 экз.
- Сидоров И. Н., Димитров А. А. Микрофоны и телефоны. — «Радио и связь», 1993. — 152 с. — (Массовая радиобиблиотека; Вып. 1197). — 20 000 экз. — ISBN 5-256-01072-7, ISBN 978-5-256-01072-0.
- Фурдуев В. В. Акустические основы вещания. — М.: Государственное издательство литературы по вопросам связи и радио, 1960.
- Дольник А. Г., Эфрусси М. М. Микрофоны. — 2 изд.. — М.: Энергия, 1967.
- Б. Я. Меерзон. Основы звукорежиссуры и оборудование студий звукозаписи. — 2-е изд.. — М.: Гуманитарный институт телевидения и радиовещания имени М.А. Литовчина, 2012. — С. 80—81. — 2 с. — ISBN 978-5-942237-029-9.
- Нисбетт А. Применение микрофонов. — М.: Искусство, 1981. — 173 с. — 16 000 экз.
Ссылки
Микрофон — Википедия
Микрофо́н (от греч. μικρός — маленький, φωνη — голос) — электроакустический прибор, преобразующий акустические колебания в электрический сигнал.
История
В телефонном аппарате Белла, микрофон, как отдельный узел, отсутствовал, его функцию выполнял электромагнитный капсюль, совмещавший в себе функции микрофона и телефонного капсюля. Первым устройством, использующимся только в качестве микрофона стал угольный микрофон Эдисона, об изобретении которого также независимо заявляли Генрих Махальский в 1878 году и Павел Голубицкий в 1883 году. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.
Конденсаторный микрофон был изобретён инженером Bell Labs Эдуардом Венте (Edward Christopher Wente) в 1916 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.
Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами. Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Эрлахом (Gerwin Erlach) и Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (около 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной звукозаписи благодаря чрезвычайно широким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли ома), что значительно осложняет проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют бо́льшие размеры и массу по сравнению со всеми остальными типами.
Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.
В 1931 году американские инженеры Венте и Тёрэс (Albert L. Thuras) изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки ом и сотни килоом), мог быть изготовлен в меньших размерах и является обратимым. Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи не только в студийных условиях. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).
Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.
Электретный микрофон, изобретённый японским учёным Ёгути в начале 1920-х годов, по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаом и выше) заставляло применять исключительно ламповые схемы. Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.
Устройство микрофона
Принцип действия микрофона с подвижной катушкойПринцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.
Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).
Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.
Классификация микрофонов
Типы микрофонов по принципу действия
Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год):
Тип микрофона | Диапазон воспринимаемых частот, Гц | Неравномерность частотной характеристики, дБ | Осевая чувствительность на частоте 1 000 Гц, мВ/Па |
---|---|---|---|
Угольный | 300—3400 | 20 | 1000 |
Электродинамический катушечного типа | 100—10 000 (1 класса) 30—15 000 (высшего класса) | 12 | 0,5 ~1,0 |
Электродинамический ленточного типа | 50—10 000 (1 класса) 70—15 000 (высшего класса) | 10 | 1 1,5 |
Конденсаторный | 30—15 000 | 5 | 5 |
Пьезоэлектрический | 100—5000 | 15 | 50 |
Электромагнитный | 300—5000 | 20 | 5 |
Функциональные виды микрофонов
- Студийный микрофон
- Сценический микрофон
- Измерительный микрофон («искусственное ухо»)
- Микрофонный капсюль для телефонных аппаратов
- Микрофон для применения в радиогарнитурах
- Микрофон для скрытого ношения
- Ларингофон
- Гидрофон
Характеристики микрофонов
Схематическое обозначение микрофонаМикрофоны любого типа оцениваются следующими характеристиками:
- чувствительность
- амплитудно-частотная характеристика
- акустическая характеристика микрофона
- характеристика направленности
- уровень собственных шумов микрофона
Чувствительность
Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0, как правило, в свободном звуковом поле[1], то есть при отсутствии влияния отражающих поверхностей[2]. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона это направление называется осевой чувствительностью:
M0 = U/P0 (мВ/Па).
Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.
Таким образом, микрофон с чувствительностью −75 дБ менее чувствителен, чем −54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для ориентировки : −54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.
Частотная характеристика чувствительности
ЧХЧ микрофонов Октава МК-319 и Shure SM58Частотная характеристика чувствительности (ЧХЧ) — это зависимость осевой чувствительности микрофона от частоты звуковых колебаний в свободном поле. Неравномерность ЧХЧ, как правило, измеряют в децибелах как двадцать логарифмов (по основанию 10) отношения чувствительности микрофона на определённой частоте к чувствительности на опорной частоте (в основном 1 кГц).
Акустическая характеристика
Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а, следовательно, и характеристики направленности, отличают три типа микрофонов как приёмников звука: приёмники давления; градиента давления; комбинированные.
Характеристика направленности
приёмники давления | |
Ненаправленный | |
приёмники градиента давления | |
Двунаправленный «Восьмёрка» | |
комбинированные | |
Кардиоида | |
Гиперкардиоида |
Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:
- φ = Mα/M0
Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, то есть φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.
Ненаправленные микрофоны
В ненаправленных микрофонах — приёмниках давления — сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. Если размеры соизмеримы с длиной волны, тогда за счёт дифракции звуковых волн микрофон приобретает направленность. На частотах от 5000 Гц и ниже такие микрофоны являются ненаправленными. Преимуществом ненаправленных микрофонов является простота конструкции, расчёта капсюля и стабильности характеристик с течением времени. Ненаправленные капсюли часто используют в составе измерительных микрофонов, в быту могут быть использованы для записи разговора людей, сидящих за круглым столом.
Микрофоны двустороннего направления
В микрофонах — приёмниках градиента давления — сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмёрки.
Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга. Также их применение удобно в студиях звукозаписи при записи голоса с одновременной игрой на инструментах — так как они хорошо отсекают звуки, приходящие несоосно с основным, а также при некоторых способах записи стереозвука (технология Блюмлейна).
Микрофоны одностороннего направления
Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих ещё меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.
Эти микрофоны имеют определённые преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами, микрофон не воспринимает.
Уровень шумов
Эквивалентный уровень шума (equivalent noise). В соответствии с международными стандартами собственный уровень шума микрофона определяется как уровень звукового давления, который создаёт напряжение на выходе микрофона, равное напряжению, возникающему в нём только за счёт собственных шумов при отсутствии звукового сигнала. Он может быть рассчитан по формуле
LpЭ=20lg Uш/Sρ0,
где:
Uш — квадратный корень из разности квадратов значений напряжения на выходе испытательного стенда по ГОСТ 16123-88 (IEC 60268-4), измеренное при подключенном микрофоне и при замене его на резистор – эквивалент модуля сопротивления испытуемого микрофона,
S — чувствительность микрофона на частоте 1000 Гц, ρ0=2,10−5Па.
Способы измерения этого параметра несколько отличаются в разных стандартах, поэтому обычно в современных каталогах приводятся два значения эквивалентного уровня шумов: по стандарту DIN 45 412 (IEC 60268-1) и по стандарту DIN 45 405 (CCIR 468-3). В первом случае при измерениях используется взвешивающая стандартная кривая А. Во втором случае используется другая форма взвешивающей кривой (психометрическая кривая 468) и отличия в методике, более подходящей для измерительных микрофонов.
Защита для микрофонов
Для микрофонов существуют различные типы защиты: накладки из полиуретана, поп-фильтры, звукозаглушающие боксы и капсюли (решётки).
Микрофон со снятой защитой.
«Дохлая кошка» и «дохлый котёнок». Дохлая кошка закрывает стереомикрофон для DSLR-камеры. Названия отличаются из-за разных размеров.
Микрофонная решётка (капсюль), защищающая микрофон от ветра и тому подобного.
Типы подключения
Проводные микрофоны с неразъёмным кабелем. Для цветовой маркировки перемотаны изолентойБольшинство микрофонов подключается к звуковому оборудованию посредством кабеля. Кабели могут быть либо , либо разъёмными. Последние применяются чаще всего. Долгие годы во время выступления на сцене, конференциях и тому подобном применялись именно проводные микрофоны, так как они неприхотливы и просты в эксплуатации. Профессиональные микрофоны имеют трёхпроводное балансное подключение (разъёмы XLR) для снижения наводок и помех. Для работы конденсаторных микрофонов звуковое оборудование должно иметь режим фантомного питания.
Также существуют более сложные устройства — радиомикрофоны (беспроводные микрофоны, радиосистемы), — которые составляют конкуренцию проводным микрофонам, хотя и не вытесняют их совсем (они также применяются для выступления на сцене, на конференциях). Внутри такого микрофона находится радиопередатчик, передающий по радио звуки на расположенный поблизости радиоприёмник (ресивер) через внутреннюю антенну (у некоторых беспроводных микрофонов также встречается внешняя антенна; у ресивера обязательно имеется внешняя антенна). Рабочая частота ресивера строго соответствует рабочей частоте передатчика микрофона (рабочая частота измеряется в мегагерцах (МГц, MHz) и может достигать нескольких сотен единиц — это УКВ-радиосвязь (или FM; иногда в техническом описании указано «FM wireless microphone»)). Приёмник подключается к звуковому оборудованию посредством кабеля, сам же питается от электросети.
Главное удобство радиомикрофонов в том, что они в отличие от проводных имеют хотя и ограниченную мощностью передатчика, но бо́льшую свободу передвижения. Недостаток — относительно частая разрядка элементов питания (аккумуляторов)[3].
Радиомикрофоны бывают как бытового, так и профессионального уровня. Бытовые обычно работают по принципу «plug and play» («включи и работай») и имеют только настройки выходной громкости. У радиосистем профессиональных серий на ресивере и самом микрофоне можно установить желаемые настройки сигнала для каждого конкретного микрофона (иные названия: калибровка, отстройка), что позволяет одному ресиверу обслуживать иногда сразу 10 и более радиомикрофонов, кроме того, качество сигнала и передаваемых звуков у них гораздо выше, нежели у бытовых, поэтому профессиональные радиомикрофоны так хорошо себя зарекомендовали на концертах. Также бывают цифровые микрофонные радиосистемы из тех же профессиональных серий.
Наиболее известными производителями профессиональных радиомикрофонов являются Sennheiser, Beyerdynamic (Германия) и Shure (США)[источник не указан 1270 дней].
На фото для примера показан радиомикрофон «Nady DKW-Duo». Когда в концерте участвует несколько радиомикрофонов, то для цветовой маркировки их обычно перематывают изолентой (как на фото), поскольку они идентичны по виду (если одного типа и серии)[4].
Радиомикрофон со специальным радиоприёмникомСм. также
Примечания
Литература
- Микрофон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Микрофон // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981.
- Сапожков М. А. Электроакустика. Учебник для вузов. — М.: «Связь», 1978. — 272 с. — 30 000 экз.
- Сидоров И. Н., Димитров А. А. Микрофоны и телефоны. — «Радио и связь», 1993. — 152 с. — (Массовая радиобиблиотека; Вып. 1197). — 20 000 экз. — ISBN 5-256-01072-7, ISBN 978-5-256-01072-0.
- Фурдуев В. В. Акустические основы вещания. — М.: Государственное издательство литературы по вопросам связи и радио, 1960.
- Дольник А. Г., Эфрусси М. М. Микрофоны. — 2 изд.. — М.: Энергия, 1967.
- Б. Я. Меерзон. Основы звукорежиссуры и оборудование студий звукозаписи. — 2-е изд.. — М.: Гуманитарный институт телевидения и радиовещания имени М.А. Литовчина, 2012. — С. 80—81. — 2 с. — ISBN 978-5-942237-029-9.
- Нисбетт А. Применение микрофонов. — М.: Искусство, 1981. — 173 с. — 16 000 экз.
Ссылки
История изобретения микрофона
Микрофон — прибор, который преобразовывает звуковые колебания в электрические. Прибор играет важную роль в звукозаписи, является первым в цепочке приема звуковых волн. В повседневной жизни, микрофоны являются неотъемлемой частью для осуществления коммуникации на расстоянии.
Так, в любом телефоне присутствует микрофон. Так же микрофоны присутствуют в магнитофонах оснащенных звукозаписывающей функцией. Прибор часто используется в видеозаписи, на телевидении и радио, в качестве радиосвязи. Некоторые ультразвуковые измерения и контроль осуществляются посредством через микрофон, к примеру, фиксация звуковых волн млекопитающих под водой.
Один из первых типов микрофонов – угольный микрофон. Получил он название благодаря своей конструкции. В герметичную капсулу помещаются две металлические пластины, а между ними размещается угольный порошок. Это все подсоединяется к мембране.
При воздействии тока давление в капсуле изменяется, что в свою очередь влияет на сопротивления между зернами угольного порошка изменением тока в сети, что дает нам передачу звука посредством преобразования колебаний в электрические сигналы.
Первый такой микрофон был изобретен 4 марта 1877 г. Эмилем Берлинером. Благодаря своей бюджетности и отсутствию необходимости усиления звука без посторонних полупроводников, такой микрофон до недавнего времени использовался в старых телефонных аппаратах.
Однако в этой истории все не так просто. За год до этого Александр Белл также создал микрофон, называвшийся, правда, жидкостным передатчиком. Жидкостный передатчик был представлен на филадельфийской выставке, посвященной столетию американской революции. Там-то его и увидел Берлинер и решил, что сможет сделать прибор не хуже.
Берлинер сумел очистить и усилить передаваемые звуки и изобрел, таким образом, своеобразный телефонный передатчик с неплотным контактом, который назвал микрофоном. Благодаря усовершенствованиям Берлинера телефон перестал быть просто технической новинкой и стал эффективным средством связи, способным передавать звуки на большие расстояния.
Когда Белл узнал про микрофон, он начал судиться с Берлинером, но суд неожиданно встал на сторону Берлинера. Тогда Белл решил пойти другим путем – патент, выданный Берлинеру, был выкуплен за 50 тысяч долларов, а сам изобретатель был принят в Bell Telephone Company на постоянное жалование в качестве главного специалиста по телефонной технике.
Также есть сведения, что получил распространение угольный микрофон Эдисона, об изобретении которого также независимо заявляли Генрих Махальский в 1878 году и Павел Голубицкий в 1883 году. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии.
Конденсаторный микрофон был изобретён инженером Bell Labs Эдуардом Венте (Edward Christopher Wente) в 1916 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.
Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами. Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Эрвином Эрлахом (Gerwin Erlach) и Вальтером Шоттки электродинамический микрофон ленточного типа.
Они расположили в магнитном поле гофрированную ленточку из очень тонкой (около 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной звукозаписи благодаря чрезвычайно широким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно усложняет проектирование усилителей.
Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.
Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.
В 1931 году американские инженеры Эдуард Венте и Альберт Тёрэс (Albert L. Thuras) изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило-Ом), мог быть изготовлен в меньших размерах и является обратимым (выполняющий функции и микрофона и телефона).
Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи не только в студийных условиях. Создание малых по размеру (даже, несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).
Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.
Электретный микрофон, изобретённый японским учёным Ёгути в начале 1920-х годов, по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета.
Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаом и выше) заставляло применять исключительно ламповые схемы. Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с, собранным в том же корпусе, предусилителем на полевом транзисторе.
Промышленное производство микрофонов в настоящее время достигает десятков миллионов штук в год. Разработкой и производством микрофонов занимаются такие фирмы как Neumann, Sennheiser, Beyerdynamic, AKG, Shure, Sony, DPA, Октава и многие другие.
Источник публикации
Вступите в группу, и вы сможете просматривать изображения в полном размере
Микрофон | Музыка вики | Fandom
Эта статья не относится к основной части музыки!
Микрофон — электроакустический прибор, преобразующий акустические колебания в электрический сигнал.
История
В телефонном аппарате Белла, микрофон, как отдельный узел, отсутствовал, его функцию выполнял электромагнитный капсюль, совмещавший в себе функции микрофона и телефонного капсюля. Первым устройством, использующимся только в качестве микрофона стал угольный микрофон Эдисона, об изобретении которого также независимо заявляли Генрих Махальский в 1878 году и Павел Голубицкий в 1883 году. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.
Конденсаторный микрофон был изобретён инженером Bell Labs Эдуардом Венте в 1916 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.
Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами. Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Эрлахом и Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (около 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной звукозаписи благодаря чрезвычайно широким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли ома), что значительно осложняет проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют бо́льшие размеры и массу по сравнению со всеми остальными типами.
Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.
В 1931 году американские инженеры Венте и Тёрэс изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки ом и сотни килоом), мог быть изготовлен в меньших размерах и является обратимым. Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи не только в студийных условиях. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).
Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.
Электретный микрофон, изобретённый японским учёным Ёгути в начале 1920-х годов, по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаом и выше) заставляло применять исключительно ламповые схемы. Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.
Устройство микрофона
Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.
Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).
Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.
Классификация микрофонов
Типы микрофонов по принципу действия
- Динамический микрофон
- Катушечный микрофон
- Ленточный микрофон
- Электростатический микрофон
- Конденсаторный микрофон
- Микрофон Ноймана
- Угольный микрофон
- Пьезомикрофон
- Ламповый микрофон
- Оптоакустический микрофон (несущей является свет)
Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год):
Тип микрофона | Гц | Неравномерность частотной характеристики, дБ | Осевая чувствительность на частоте 1 000 мВ/Па |
---|---|---|---|
Угольный | 300—3400 | 20 | 1000 |
Электродинамический катушечного типа | 100—10 000 (1 класса) 30—15 000 (высшего класса) | 12 | 0,5 ~1,0 |
Электродинамический ленточного типа | 50—10 000 (1 класса) 70—15 000 (высшего класса) | 10 | 1 1,5 |
Конденсаторный | 30—15 000 | 5 | 5 |
Пьезоэлектрический | 100—5000 | 15 | 50 |
Электромагнитный | 300—5000 | 20 | 5 |
Функциональные виды микрофонов
- Студийный микрофон
- Сценический микрофон
- Измерительный микрофон («искусственное ухо»)
- Микрофонный капсюль для телефонных аппаратов
- Микрофон для применения в радиогарнитурах
- Микрофон для скрытого ношения
- Ларингофон
- Гидрофон
Характеристики микрофонов
Микрофоны любого типа оцениваются следующими характеристиками:
- чувствительность
- частотная характеристика чувствительности
- акустическая характеристика микрофона
- характеристика направленности
- уровень собственных шумов микрофона
Чувствительность
Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0, как правило, в свободном звуковом поле, то есть при отсутствии влияния отражающих поверхностей. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона это направление называется осевой чувствительностью:
M0 = U/P0 (мВ/Па).
Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.
Таким образом, микрофон с чувствительностью −75 дБ менее чувствителен, чем −54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для ориентировки: −54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.
Частотная характеристика чувствительности
Частотная характеристика чувствительности (ЧХЧ) — это зависимость осевой чувствительности микрофона от частоты звуковых колебаний в свободном поле. Неравномерность ЧХЧ, как правило, измеряют в децибелах как двадцать логарифмов (по основанию 10) отношения чувствительности микрофона на определённой частоте к чувствительности на опорной частоте (в основном 1 кГц).
Акустическая характеристика
Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U/F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а, следовательно, и характеристики направленности, отличают три типа микрофонов как приёмников звука: приёмники давления; градиента давления; комбинированные.
Характеристика направленности
Студия звукозаписи — Википедия
Студия звукозаписи — специальное помещение, созданное для записи и обработки звука, также известное под названием звукозаписывающая студия, или аудиостудия.
Студия включает в себя комнаты звукоинженера, комнаты для записи, музыкальных инструментов, и в отдельных случаях — из комнаты прослушивания, иногда также выделяют отдельное помещение под аппаратную, где может устанавливаться громоздкая и шумная аппаратура, например магнитофон.
К помещениям, где производится непосредственно звукозапись и контроль записываемого материала, имеются специальные требования: звукоизоляция и звукопоглощение.
Звукопоглощение добивается за счёт крепления специальных звукопоглощающих материалов на стены и потолок. Эти материалы имеют высокий показатель поглощения (гашения) аудиоволны по определённым частотам, что способствует удалению эха (естественной реверберации). Таким образом, материалы выбираются для конкретных помещений, где будет производиться звукозапись конкретных инструментов. К примеру, для звукоизоляции помещений, где производится запись вокала, используются такие материалы как поролон, вата, ковролин и/или их комбинации (эти материалы имеют хорошее поглощение в диапазоне от 3КГц до 9-10КГц), что не совсем приемлемо для помещений, где производится запись таких инструментов как барабаны или контрабас (где требуются использования специальных композитных панелей для поглощения низких и субнизких частот).
Звукоизоляции добиваются за счёт специальной конструкции стен студии. Их утолщают и создают по возможности несколько стен, разделяя их узкими промежутками, в которые засыпается песок или другие материалы, способные поглотить энергию звуковой волны. Эти изменения позволяют изолировать студию как от шумов извне, так и в обратном направлении.
Главным образом, оборудование студий звукозаписи состоит из:
Студийные мониторы предназначены для контроля записываемого звука. Могут использоваться как громкоговорящие мониторы, так и специальные мониторные наушники. Основное требование к мониторам — минимум вносимых в звук искажений. Мониторы не должны каким-то образом маскировать дефекты записи.
В 2000-х и 2010-х годах компьютеры общего назначения быстро взяли на себя ведущую роль в процессе записи. С помощью программного обеспечения, такого как Protools, мощный компьютер с быстрым процессором смог заменить микшерные пульты, многодорожечные магнитофоны, синтезаторы, сэмплеры и блок эффектов (реверберация, эхо, компрессия и т. д.), которые требовались в студиях звукозаписи в 1980-х и 1990-х годах. Компьютер, оснащенный таким образом, называется цифровая звуковая рабочая станция (англ. DAW) или виртуальная аудиостудия. Популярный аудиозаписывающий софт включает Apple Logic Pro, Pro Tools от Digidesign — почти стандарт для большинства профессиональных студий; Cubase и Nuendo от Steinberg и MOTU Digital Performer — популярный для записи MIDI и музыки к фильмам. Другие программные приложения включают Ableton Live, Mixcraft Pro Studio, Sonar Cakewalk, ACID Pro, FL Studio, Adobe Audition, Cockos Reaper, Auto-Tune, Audacity и Ardour.
С 2010-х годов виртуальные аудиостудии больше зависят от качества аппаратуры звукозаписи, чем от компьютера, на котором они работают, поэтому типичное компьютерное оборудование высокого класса является менее приоритетным, если не задействовано MIDI. В то время как Apple Macintosh используется для большинства студийных работ, для Microsoft Windows и Linux имеется большой выбор программного обеспечения[прояснить].
Микрофоны[править | править код]
В настоящее время во всех студиях звукозаписи используются в основном конденсаторные, ленточные и динамические микрофоны. Они отличаются своими частотными и динамическими характеристиками, чувствительностью и направленностью. Вокальные микрофоны как правило конденсаторные или ленточные построены на большой мембране, имеют повышенный динамический и частотный диапазон и высокую чувствительность (малое время отклика). Они устанавливаются на специальной резиновой подставке (так называемый «паук») для исключения попаданий каких либо вибраций на корпус микрофона. Между микрофоном и исполнителем также располагают поп-фильтр для защиты мембраны микрофонов от ударов при резком выдыхании воздуха.
Микшерный пульт в одной из студийВыбор инструментальных микрофонов зависит от конкретных инструментов, и иногда от предпочтений исполнителя. Для записи смычково-струнных инструментов чаще используют узконаправленные конденсаторные микрофоны с повышенной чувствительностью на определенных частотах для передачи особенностей конкретного инструмента.
Микшерный пульт[править | править код]
Микшерный пульт необходим для сведения сигнала от разных источников в необходимое для записи количество каналов, а также наложения эффектов. Причём сигнал, обработанный в одном канале микшера (например, предварительно настроенном по уровню сигнала и частотной характеристике канал микрофона) может каскадно подаваться на другой канал для дальнейшей обработки.
- 1890-е — 1930-е
В эпоху акустических записей (до введения микрофонов, электроники и усиления) самые ранние звукозаписывающие студии были устроены очень просто, являясь по существу звуконепроницаемыми комнатами, которые изолировали исполнителей от внешнего шума. В течение этой эры нередко записывались записи в любом доступном месте, например, в местной бальной зале, используя переносное акустическое записывающее оборудование. В этот период основные записи были сделаны с использованием процесса непосредственной нарезки на диск (direct-to-disc). Исполнители обычно группировались вокруг большого акустического рупора (увеличенный вариант знакомого рупора фонографа). Акустическая энергия от голосов или инструментов была направлена через диафрагму рога на механический режущий станок, расположенный в следующей комнате, который вписывал сигнал в виде модулированной канавки непосредственно на поверхность главного цилиндра или диска.
После изобретения и коммерческого внедрения микрофонов, электронных усилителей, громкоговорителей и микшерного пульта, электрическая запись постепенно преобразовала индустрию записи. К 1925 году это технология заменила механические методы звукозаписи на таких крупных лейблах, как RCA Victor и Columbia, и к 1933 году акустическая запись полностью исчезла.
- 1940-е — 1970-е
Электрическая запись, распространившаяся в начале 1930-х годов, и мастеринг записи был электрифицирован, но мастер-запись все же приходилось нарезать непосредственно на диск (direct-to-disc). В соответствии с преобладающими музыкальными направлениями, студии в этот период были в основном предназначены для живой записи симфонических оркестров и других крупных инструментальных ансамблей. Инженеры вскоре обнаружили, что большие реверберирующие пространства, такие как концертные залы, создают яркую акустическую подпись, поскольку естественный ревербератор усиливает звук записи. В этот период предпочтение отдавали большим, акустически «живым» залам, а не акустическим «мертвым» стендам и студийным залам, которые стали распространяться после 1960-х годов. Из-за ограничений технологии записи, которые не учитывали методы многодорожечной записи, студии середины 20-го века разрабатывались под концепцию группировки музыкантов (например, ритм-секция или духовая секция) и певцов (например, группа бэк-вокалистов), а не разделение их, и взаимного размещение исполнителей и микрофонов для захвата сложного акустического и гармонического взаимодействия, возникшего во время исполнения (в 2000-х годах современная звукозапись всё ещё иногда использует этот подход для больших проектов , которые используют большие оркестры).
- после 1980-х
Электрическим студиям звукозаписи в середине XX века часто не хватало изоляционных кабин, перегородок, а иногда и динамиков, и только в 1960-х годах, с введением высококачественных наушников стала обычной практикой для исполнителей использовать гарнитуры для контроля процесса во время записи и прослушивания воспроизведения. Трудно было выделить всех исполнителей — основная причина, по которой эта практика не использовалась просто потому, что записи обычно делались в виде концертного ансамбля, и все исполнители должны были видеть друг друга и лидера ансамбля во время игры. Инженеры-звукорежиссёры, прошедшие обучение в этот период, научились использовать сложные акустические эффекты, которые могут быть созданы посредством «утечки» между различными микрофонами и группами инструментов, и эти техники стали чрезвычайно опытными в изучении уникальных акустических свойств своих студий и исполнении музыкантов.
- М. А. Сапожков. Акустика. — М. : Радио и связь, 1989. — С. 159−190. — 336 с. — 24 000 экз. — ISBN 5-256-00187-6.