Что идентифицирует ip адрес: Создание адресов TCP/IP и организация подсетей — Windows Client

Содержание

Создание адресов TCP/IP и организация подсетей — Windows Client

  • Статья
  • Чтение занимает 10 мин

Эта статья предназначена как общее введение в понятия сетей с межсетевым протоколом (IP) и организации подсетей. В конце статьи приводится глоссарий.

Применяется к: Windows 10 — все выпуски
Оригинальный номер базы знаний: 164015

Сводка

При настройке протокола TCP/IP на компьютере Windows для параметров конфигурации TCP/IP требуются:

  • IP-адрес
  • Маска подсети
  • Шлюз по умолчанию

Чтобы правильно настроить TCP/IP, необходимо понять, как создаются адреса для сетей TCP/IP и как они разделяются на сети и подсети.

Успех TCP/IP как сетевого протокола Интернета во многом объясняется его способностью подключать сети разных размеров и системы разных типов. Эти сети произвольно подразделяются на три основных класса (наряду с несколькими другими), которые имеют заранее определенные размеры. Каждая из них может быть разделена системными администраторами на более мелкие подсети. Маска подсети используется для разделения IP-адреса на две части. Одна часть определяет хост (компьютер), другая — сеть, к которой она принадлежит. Чтобы лучше понять, как работают IP-адреса и маски подсети, взгляните на IP-адрес и узнайте, как он организован.

IP-адреса: сети и хосты

IP-адрес — это 32-битный номер. Он уникально идентифицирует хост (компьютер или другое устройство, например, принтер или маршрутизатор) в сети TCP/IP.

IP-адреса обычно выражаются в десятичном представлении с точками, в виде четырех номеров, разделенных точками, например, 192.168.123.132. Чтобы понять, как маски подсети используются для различия между хостами, сетями и подсетями, изучите IP-адрес в двоичном представлении.

Например, пунктирный десятичный IP-адрес 192.168.123.132 является (в двоичной нотации) 32-разрядным числом 11000000101010000111101110000100. Это число может быть трудно понять, поэтому разделите его на четыре части из восьми двоичных символов.

Эти 8-битные разделы называются октетами. IP-адрес из этого примера будет иметь вид 11000000.10101000.01111011.10000100. Это число имеет немного больше смысла, поэтому для большинства применений преобразуем двоичный адрес в десятичное представление с точками (192.168.123.132). Десятичные числа, разделенные точками, — это октеты, преобразованные из двоичного представления в десятичное.

Чтобы глобальная сеть TCP/IP (WAN) эффективно работала в качестве коллекции сетей, маршрутизаторы, которые передают пакеты данных между сетями, не знают точного расположения хоста, для которого предназначен пакет информации. Маршрутизаторы знают только о том, какая сеть является членом хоста, и используют сведения, хранящиеся в таблице маршрутов, для определения того, как получить пакет в сеть хоста назначения. После доставки пакета в сеть назначения пакет доставляется соответствующему хосту.

Чтобы этот процесс работал, IP-адрес состоит из двух частей. Первая часть IP-адреса используется в качестве сетевого адреса, последняя — как адрес хоста. Если взять пример адреса 192.168.123.132 и разделить его на эти две части, вы получите сеть 192.168.123. с хостом .132 или 192.168.123.0 — адрес сети. 0.0.0.132 — адрес хоста.

Маска подсети

Второй элемент, необходимый для работы TCP/IP, — это маска подсети. Маска подсети используется протоколом TCP/IP для определения того, находится ли хост в локальной подсети или в удаленной сети.

В протоколе TCP/IP части IP-адреса, которые используются в качестве сетевых адресов и адресов хоста, не исправляются. Если у вас нет дополнительных сведений, то сетевые адреса и адреса хоста выше не могут быть определены. Эти сведения предоставляются в другом 32-битовом номере, который называется маской подсети. В этом примере маска подсети — 255.255.

255.0. Неочевидно, что означает это число, если вы не знаете, что 255 в двоичном представлении равно 11111111. Таким образом, маска подсети будет иметь вид 11111111.11111111.11111111.00000000.

Если выстроить IP-адрес и маску подсети вместе, можно разделить сетевую часть адреса сети и адрес хоста:

110000000.10101000.01111011.10000100 — IP-адрес (192.168.123.132)
11111111.11111111.11111111.00000000 — маска подсети (255.255.255.0)

Первые 24 бита (количество единиц в маске подсети) идентифицируются как адрес сети. Последние 8 битов (количество оставшихся нулей в маске подсети) идентифицируются как адрес узла. Таким образом, получаются следующие адреса:

11000000.10101000.01111011.00000000 — адрес сети (192.168.123.0)
00000000.00000000.00000000.10000100 — адрес узла (000.000.000.132)

Из данного примера с использованием маски подсети 255.255.255.0 видно, что код сети 192.168.123.0, а адрес узла 0.0.0.132. Когда пакет с конечным адресом 192.168.123.132 доставляется в сеть 192. 168.123.0 (из локальной подсети или удаленной сети), компьютер получит его из сети и обработает.

Почти все десятичные маски подсети преобразовываются в двоичные числа, представленные единицами слева и нолями справа. Вот еще некоторые распространенные маски подсети:

ДесятичныйBinary
255.255.255.1921111111.11111111.1111111.11000000
255.255.255.2241111111.11111111.1111111.11100000

Internet RFC 1878 (доступен на InterNIC—Публичная информация об услугах регистрации доменных имен в сети Интернет) описывает действующие подсети и маски подсетей, используемые в сетевых протоколах TCP/IP.

Классы сетей

Интернет-адреса распределяются организацией InterNIC, которая администрирует Интернет. Эти IP-адреса распределены по классам. Наиболее распространены классы A, B и C. Классы D и E существуют, но не используются конечными пользователями. Каждый из классов адресов имеет свою маску подсети по умолчанию. Определить класс IP-адреса можно по его первому октету. Ниже описаны интернет-адреса классов A, B и C с примером адреса для каждого класса.

  • Сети класса A по умолчанию используют маску подсети 255.0.0.0 и имеют значения от 0 до 127 в первом октете. Адрес 10.52.36.11 является адресом класса A. В первом октете число 10, которое находится между 1 и 126 включительно.

  • Сети класса B по умолчанию используют маску подсети 255.255.0.0 и имеют в первом октете значение от 128 до 191. Адрес 172.16.52.63 является адресом класса B. В первом октете число 172, которое находится между 128 и 191 включительно.

  • Сети класса C по умолчанию используют маску подсети 255.255.255.0 и имеют в первом октете значение от 192 до 223. Адрес 192.168.123.132 является адресом класса C. В первом октете число 192, которое находится между 192 и 223 включительно.

В некоторых случаях значения маски подсети по умолчанию не соответствуют потребностям организации по какой-либо из следующих причин:

  • Физическая топология сети
  • Количество сетей (или узлов) не соответствует ограничениям маски подсети по умолчанию.

В следующем разделе описано распределение сетей с помощью масок подсети.

Образование подсетей

TCP/IP-сеть класса A, B или C может еще быть разбита на подсети системным администратором. Образование подсетей может быть необходимо при согласовании логической структуры адреса Интернета (абстрактный мир IP-адресов и подсетей) с физическими сетями, используемыми в реальном мире.

Возможно, системный администратор, которому был выделен блок IP-адресов, администрирует сети, организованные не соответствующим для них образом. Например, имеется глобальная сеть с 150 узлами в трех сетях (в разных городах), соединенных маршрутизатором TCP/IP. У каждой из этих трех сетей 50 узлов. Пользователю выделяется сеть класса C 192.168.123.0. (Пример, на самом деле диапазон, к которому принадлежит этот адрес, не выделяется в Интернете.) Это значит, что адреса с 192.168.123.1 по 192.168.123.254 можно использовать для своих 150 узлов.

Адреса 192.168.123.0 и 192.168.123.255 нельзя использовать в данном примере, так как двоичные адреса с составляющей узла из одних единиц и нолей недопустимы. Адрес, состоящий из нулей, недопустим, поскольку он используется для определения сети без указания узла. Адрес с числом 255 (в двоичном обозначении адрес узла, состоящий из одних единиц) используется для доставки сообщения на каждый узел сети. Достаточно запомнить, что первый и последний адрес любой сети и подсети нельзя присваивать отдельному узлу.

Теперь осталось дать IP-адреса 254 узлам. Это несложно, если все 150 компьютеров являются частью одной сети. Тем не менее 150 ваших компьютеров находятся в трех отдельных физических сетях. Вместо того, чтобы запрашивать дополнительные блоки адресов для каждой сети, вы делите сеть на подсети, которые позволяют использовать один блок адресов в нескольких физических сетях.

В этом случае вы делите сеть на четыре подсети, используя маску подсети, которая делает сетевой адрес больше, а возможный диапазон адресов хостов — меньше. Другими словами, вы «заимствуете» некоторые биты, которые используются для адреса хоста, и используете их для сетевой части адреса. Маска подсети 255.255.255.192 предоставляет четыре сети по 62 хостов каждая. Это работает, так как в двоичном представлении 255.255.255.192 — это то же самое, что и 11111111.1111111.110000000. Первые две цифры последнего октета становятся сетевыми адресами, поэтому вы получаете дополнительные сети 00000000 (0), 010000000 (64), 10000000 (128) и 110000000 (192). (Некоторые администраторы будут использовать только две подсети, использующие 255.255.255.192 в качестве маски подсети. Дополнительные сведения по этой теме см. в статье RFC 1878.) В этих четырех сетях для адресов узлов можно использовать последние шесть двоичных цифр.

Используя маску подсети 255.255.255.192, ваша сеть 192.168.123.0 становится четырьмя сетями 192.168.123.0, 192.168.123.64, 192.168.123.128 и 192.168.123.192. Эти четыре сети будут иметь такие допустимые адреса хостов:

192.168.123.1-62 192.168.123.65-126 192.168.123.129-190 192.168.123.193-254

Помните, что двоичные адреса хостов со всеми единицами или всеми нулями являются недействительными, поэтому нельзя использовать адреса с последним октетом 0, 63, 64, 127, 128, 191, 192 или 255.

Вы можете увидеть, как это работает, взглянув на два адреса хостов, 192.168.123.71 и 192.168.123.133. Если используется маска подсети класса C по умолчанию 255.255.255.0, оба адреса находятся в сети 192.168.123.0. Однако, если вы используете маску подсети 255.255.255.192, они находятся в разных сетях; 192.168.123.71 — в сети 192.168.123.64, 192.168.123.133 — в сети 192.168.123.128.

Шлюзы по умолчанию

Если компьютеру TCP/IP необходимо связаться с хостом в другой сети, он обычно связывается с помощью устройства, которое называется маршрутизатор. В терминах TCP/IP маршрутизатор, указанный в хосте, который связывает подсеть хостов с другими сетями, называется шлюзом по умолчанию. В этом разделе объясняется, как TCP/IP определяет, отправлять ли пакеты в шлюз по умолчанию для достижения другого компьютера или устройства в сети.

Когда хост пытается взаимодействовать с другим устройством с помощью TCP/IP, он выполняет процесс сравнения с помощью определенной маски подсети и IP-адреса назначения по сравнению с маской подсети и собственным IP-адресом. В результате этого сравнения компьютеру сообщается, является ли назначение локальным хостом или удаленным хостом.

Если в результате этого процесса назначение определяется как локальный хост, компьютер отправляет пакет в локальную подсеть. Если в результате сравнения назначение определяется как удаленный хост, компьютер перенаправит пакет в шлюз по умолчанию, определенный в свойствах TCP/IP. После этого маршрутизатор несет ответственность за перенаправление пакета в соответствующую подсеть.

Устранение неполадок

Проблемы сети TCP/IP часто возникают из-за неправильной конфигурации трех основных записей в свойствах TCP/IP компьютера. Понимая, как ошибки в конфигурации TCP/IP влияют на сетевые операции, можно решить множество распространенных проблем TCP/IP.

Неправильная маска подсети. Если сеть использует другую маску подсети, чем маска по умолчанию для своего класса адресов, и клиент по-прежнему настроен с помощью маски подсети по умолчанию для класса адресов, связь не будет работать с некоторыми соседними сетями, но не с удаленными. Например, если вы создаете четыре подсети (например, в примере подсетей), но используете неправильную маску подсети 255.255.255.0 в конфигурации TCP/IP, хосты не смогут определить, что некоторые компьютеры находятся в других подсетях, чем их собственные. В этой ситуации пакеты, предназначенные для хостов различных физических сетей, которые являются частью одного и того же адреса класса C, не будут отправлены в шлюз по умолчанию для доставки. Распространенным симптомом этой проблемы является то, что компьютер может связываться с хостами, которые находятся в локальной сети, и может общаться со всеми удаленными сетями, за исключением тех сетей, которые находятся поблизости и имеют один и тот же адрес класса A, B или C. Чтобы устранить эту проблему, просто введите правильную маску подсети в конфигурацию TCP/IP для этого хоста.

Неправильный IP-адрес. Если компьютеры с IP-адресами, которые должны быть в отдельных подсетях, размещаются в локальной сети рядом друг с другом, они не смогут связывается. Они будут пытаться отправлять пакеты друг другу с помощью маршрутизатора, который не может переадресовать их правильно. Симптомом этой проблемы является компьютер, который может связываться с хостами в удаленных сетях, но не может связываться с некоторыми или всеми компьютерами в локальной сети. Чтобы устранить эту проблему, убедитесь, что все компьютеры одной физической сети имеют IP-адреса в одной подсети IP. Если в одном сегменте сети закончились IP-адреса, существуют решения, которые выходят за рамки этой статьи.

Неправильный шлюз по умолчанию. Компьютер, настроенный с неправильным шлюзом по умолчанию, может связываться с хостами в своем сетевом сегменте. Но он не сможет связываться с хостами в некоторых или всех удаленных сетях. Хост может связываться с некоторыми удаленными сетями, но не с другими, если верны следующие условия:

  • Одна физическая сеть имеет несколько маршрутизаторов.
  • Неправильный маршрутизатор настроен как шлюз по умолчанию.

Эта проблема распространена, если в организации есть маршрутизатор к внутренней сети TCP/IP и другой маршрутизатор, подключенный к Интернету.

Ссылки

Два популярных источника о TCP/IP:

  • «TCP/IP Illustrated, Volume 1: The Protocols», Richard Stevens, Addison Wesley, 1994
  • «Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture,» Douglas E. Comer, Prentice Hall, 1995

Рекомендуется, чтобы системный администратор, отвечающий за сети TCP/IP, имел хотя бы один из этих источников.

Глоссарий

  • Адрес трансляции — IP-адрес с частью хоста, которая полностью состоит из единиц.

  • Хост — компьютер или другое устройство в сети TCP/IP.

  • Интернет — глобальная коллекция сетей, подключенных друг к другу и имеющих общий диапазон IP-адресов.

  • InterNIC — организация, ответственная за администрирование IP-адресов в Интернете.

  • IP — сетевой протокол, используемый для отправки сетевых пакетов через сеть TCP/IP или Интернет.

  • IP-адрес — уникальный 32-битный адрес для хоста в сети TCP/IP или в Интернете.

  • Сеть — существует два варианта использования термина «сеть» в этой статье. Первый вариант — это группа компьютеров в одном сегменте физической сети. Второй вариант — это диапазон адресов IP-сети, выделенный системным администратором.

  • Сетевой адрес — IP-адрес с частью хоста, которая полностью состоит из нулей.

  • Октет — 8-битный номер, 4 из которых составляют 32-битный IP-адрес. Они имеют диапазон 00000000-11111111, соответствующий десятичным значениям 0–255.

  • Пакет — единица данных, передаваемая через сеть TCP/IP или глобальную сеть.

  • RFC (Запрос на комментарий) — документ, использующийся для определения стандартов в Интернете.

  • Маршрутизатор — устройство, которое передает сетевой трафик между различными IP-сетями.

  • Маска подсети — 32-битный номер, используемый для разграничения сетевой части и части хоста IP-адреса.

  • Подсеть — это сеть меньшего размера, созданная путем деления более крупной сети на равные части.

  • TCP/IP — в широком значении, набор протоколов, стандартов и утилит, обычно используемых в Интернете и крупных сетях.

  • Глобальная сеть (WAN) — большая сеть, которая является коллекцией сетей меньшего размера, разделенных маршрутизаторами. Интернет — пример большой сети WAN.

Как работают IP-адреса – основы идентификации устройств в сети

Если вы работали с компьютерами какое-то время, то, вероятно, сталкивались с IP-адресами – эти числовые последовательности, которые выглядят примерно как 192.168.0.15. В большинстве случаев нам не нужно иметь дело с ними напрямую, поскольку наши устройства и сети заботятся об их обработке «за кулисами». Когда же нам приходится иметь с ними дело, мы часто просто следуем инструкциям о том, какие и где вписать цифры. Но, если вы когда-либо хотели погрузиться немного глубже в то, что означают эти цифры, эта статья для вас.

Зачем вам это нужно? Понимание того, как работают IP-адреса, жизненно важно, если вы когда-нибудь захотите устранить неполадки в вашей домашней сети или понять, почему конкретное устройство не подключается так, как вы ожидаете. И если вам когда-либо понадобится создать нечто более продвинутое, такое как хостинг игрового сервера или медиа-сервер, к которому могут подключаться друзья из интернета, вам нужно будет что-то знать об IP-адресации. Плюс, это немного увлекательно.

В этой статье мы расскажем об основах IP-адресации, о том, что хотели бы знать люди, которые используют IP-адреса, но никогда не задумывались об их структуре. Мы не собираемся освещать некоторые из более продвинутых или профессиональных уровней, таких как классы IP, бесклассовая маршрутизация и пользовательская подсеть… но вы легко найдёте источники для дальнейшего чтения.

Что такое IP-адрес

IP-адрес однозначно идентифицирует устройство в сети. Вы видели эти адреса раньше; они выглядят примерно как 192.168.1.34.

IP-адрес всегда представляет собой набор из четырех таких чисел. Каждый номер может находиться в диапазоне от 0 до 255. Таким образом, полный диапазон IP-адресов составляет от 0.0.0 до 255. 255.255.255.

Причина, по которой каждый номер может достигать 255, заключается в том, что каждое из чисел представляет собой восьмизначное двоичное число (иногда называемое октетом). В октете число ноль будет обозначено как 00000000, а число десятичное 255 будет иметь вид 11111111, – это максимальное число, которого мы можем достигнуть в рамках октета. IP-адрес, упомянутый выше (192.168.1.34) в двоичном формате, будет выглядеть так: 11000000.10101000.00000001.00100010.

Компьютеры работают с двоичным форматом, но нам, людям, гораздо проще работать с десятичным форматом. Тем не менее, зная, что адреса фактически являются двоичными числами, нам легче будет понять, почему некоторые вещи, связанные с IP-адресами, работают так, как они это делают.

Две базовые части IP-адреса

IP-адрес устройства состоит из двух отдельных частей:

  • Идентификатор сети: является частью IP-адреса; начинаются слева и идентифицирует конкретную сеть, на которой расположено устройство. В обычной домашней сети, где устройство имеет IP-адрес 192.168.1.34, часть 192.168.1 будет идентификатором сети. Если заполнить недостающую конечную часть нулём, мы можем сказать, что сетевой идентификатор устройства – 192.168.1.0.
  • Идентификатор хоста: это часть IP-адреса, не занятого сетевым идентификатором. Он идентифицирует конкретное устройство (в мире TCP/IP устройства называют «хостами») в этой сети. Продолжая наш пример IP-адреса 192.168.1.34, идентификатором хоста будет 34 – уникальный идентификатор устройства в сети 192.168.1

Чтобы представить всё это немного лучше, давайте обратимся к аналогии. Это очень похоже на то, как уличные адреса работают в городе. Возьмите адрес, такой как Набережная 29/49. Название улицы похоже на идентификатор сети, а номер дома похож на идентификатор хоста. Внутри города никакие две улицы не будут называться одинаково, так же как ни один идентификатор сети в одной сети не будет назван одинаковым. На определенной улице каждый номер дома уникален, так же как все ID хоста в определенном сетевом идентификаторе.

Маска подсети в IP-адресе

Как же ваше устройство определяет, какая часть IP-адреса является идентификатором сети, а какая часть – идентификатор хоста? Для этого они используют второе число, которое называется маской подсети.

В большинстве простых сетей (например, в домашних или офисных) вы увидите маску подсети в формате 255.255.255.0, где все четыре числа равны либо 255, либо 0. Позиция изменения с 255 на 0 указывает на разделение между сетью и идентификатором хоста.

Основные маски подсети, которые мы описываем здесь, известны как маски подсети по умолчанию. В более крупных сетях ситуация становится более сложной. Люди часто используют пользовательские маски подсети (где позиция разрыва между нулями и единицами сдвигается в октете) для создания нескольких подсетей в одной сети.

Адрес шлюза по умолчанию

В дополнение к самому IP-адресу и маске подсети, вы также увидите адрес шлюза по умолчанию, указанный вместе с информацией IP-адресации. В зависимости от используемой платформы, этот адрес может называться по-другому. Его иногда называют «маршрутизатором», «адресом маршрутизатора», «маршрутом по умолчанию» или просто «шлюзом». Это всё одно и то же.

Это стандартный IP-адрес, по которому устройство отправляет сетевые данные, когда эти данные предназначены для перехода в другую сеть (с другим идентификатором сети).

Простейший пример этого можно найти в обычной домашней сети. Если у вас есть домашняя сеть с несколькими устройствами, у вас, вероятно, есть маршрутизатор, подключенный к интернету через модем. Этот маршрутизатор может быть отдельным устройством или может быть частью комбо-модуля модем/маршрутизатор, поставляемого вашим интернет-провайдером.

Маршрутизатор находится между компьютерами и устройствами в вашей сети и более ориентированными на открытый доступ устройствами в интернете, передавая (или маршрутизируя) трафик взад и вперёд.

Скажем, вы запускаете свой браузер и отправляетесь на сайт webznam. ru. Ваш компьютер отправляет запрос на IP-адрес нашего сайта. Поскольку наши серверы находятся в интернете, а не в вашей домашней сети, этот трафик отправляется с вашего ПК на ваш маршрутизатор (шлюз), а ваш маршрутизатор перенаправляет запрос на наш сервер. Сервер отправляет правильную информацию обратно вашему маршрутизатору, который затем перенаправляет информацию обратно на запрашиваемое устройство, и вы видите как наш сайт отображается в нашем браузере.

Как правило, маршрутизаторы настроены по умолчанию, чтобы их частный IP-адрес (их адрес в локальной сети) был первым идентификатором хоста. Так, например, в домашней сети, использующей 192.168.1.0 для сетевого ID, маршрутизатор обычно будет на хосте 192.168.1.1.

Серверы DNS

Существует одна заключительная часть информации, которую вы увидите вместе с IP-адресом устройства, маской подсети и адресом шлюза по умолчанию: адреса одного или двух серверов DNS по умолчанию. Мы – люди – намного лучше работаем с символическими названиями, чем с числовыми адресами. Ввести webznam.ru в адресную строку вашего браузера намного проще, чем запоминать и вводить IP-адреса нашего сайта.

DNS работает как телефонная книга, храня удобные для человека имена веб-сайтов (домены), и преобразуя их в IP-адреса. DNS делает это, сохраняя всю эту информацию в системе связанных DNS-серверов через интернет. Вашим устройствам необходимо знать адреса DNS-серверов, на которые нужно отправлять свои запросы.

В типичной малой или домашней сети IP-адреса DNS-сервера часто совпадают с адресами шлюза по умолчанию. Устройства отправляют свои DNS-запросы на ваш маршрутизатор, а затем перенаправляют запросы на любые DNS-серверы, которые укажет маршрутизатор. По умолчанию, это обычно любые DNS-серверы, предоставляемые вашим провайдером, но вы можете изменить их для использования разных DNS-серверов, если хотите.

В чем разница между IPv4 и IPv6

Возможно, вы также заметили при просмотре настроек другой тип IP-адреса, называемый адресом IPv6. Типы IP-адресов, о которых мы говорили до сих пор, – это адреса, используемые протоколом IP версии 4 (IPv4), разработанным в конце 70-х годов. Они используют 32 бинарных бита, о которых мы говорили (в четырех октетах), чтобы обеспечить в общей сложности 4,29 миллиарда возможных уникальных адреса. Хотя это много, все общедоступные адреса давно были «потреблены» предприятиям. Многие из них сейчас не используются, но они назначены и недоступны для общего использования.

В середине 90-х годов, обеспокоенная потенциальной нехваткой IP-адресов, специальная рабочая группа Internet Engineering Task Force (IETF) разработала IPv6. IPv6 использует 128-битный адрес вместо 32-разрядного адреса IPv4, поэтому общее количество уникальных адресов многократно выросло и стало достаточно большим (вряд ли когда-либо закончится).

В отличие от точечной десятичной нотации, используемой в IPv4, адреса IPv6 выражаются в виде восьми групп номеров, разделенных двоеточиями. Каждая группа имеет четыре шестнадцатеричных цифры, которые представляют 16 двоичных цифр (это называется хекстетом). Типичный IPv6-адрес может выглядеть примерно так:

2601: 7c1: 100: ef69: b5ed: ed57: dbc0: 2c1e

Дело в том, что нехватка адресов IPv4, вызвавшая беспокойство, в значительной степени смягчалась увеличением использования частных IP-адресов через маршрутизаторы. Всё больше и больше людей создавали свои собственные частные сети, используя частные IP-адреса.

Как устройство получает IP-адрес

Теперь, когда вы знаете основы работы IP-адресов, давайте поговорим о том, как устройства получают свои IP-адреса. Существует два типа IP-назначений: динамический и статический.

Динамический IP-адрес назначается автоматически, когда устройство подключается к сети. Подавляющее большинство сетей сегодня (включая вашу домашнюю сеть) используют Dynamic Host Configuration Protocol (DHCP). Когда устройство подключается к сети, оно отправляет широковещательное сообщение с запросом IP-адреса. DHCP перехватывает это сообщение, а затем назначает IP-адрес этому устройству из пула доступных IP-адресов.

Особенность динамических адресов заключается в том, что они могут иногда меняться. DHCP-серверы арендуют IP-адреса устройствам, и когда этот «срок аренды» заканчиваются, устройства должны получить другой IP-адрес из пула адресов, которые может назначить сервер.

В большинстве случаев это не имеет большого значения, и всё будет как и работало. Однако, вы можете указать устройству IP-адрес, который должен сохраняться. Например, у вас устройство, к которому нужно получать доступ вручную, и вам легче запомнить IP-адрес, чем имя. Или, у вас есть определенные приложения, которые могут подключаться только к сетевым устройствам, используя свой IP-адрес.

В этих случаях вы можете назначить статический IP-адрес для этих устройств. Есть несколько способов сделать это. Вы можете вручную настроить устройство со статическим IP-адресом, хотя иногда это может быть утомительным. Другим, более элегантным решением является настройка маршрутизатора для назначения статических IP-адресов определенным устройствам во время динамического назначения сервером DHCP. Таким образом, IP-адрес никогда не меняется, но вы не прерываете процесс DHCP, который обеспечивает бесперебойную работу.

TCP/IP-адресация и подсети — клиент Windows

  • Статья
  • 12 минут на чтение

Эта статья предназначена для общего ознакомления с концепциями сетей Интернет-протокола (IP) и подсетей. Глоссарий включен в конце статьи.

Применяется к:   Windows 10 – все выпуски
Исходный номер базы знаний:   164015

Сводка

При настройке протокола TCP/IP на компьютере с Windows для параметров конфигурации TCP/IP требуется:

    7 IP-адрес
  • Маска подсети
  • Шлюз по умолчанию

Для правильной настройки TCP/IP необходимо понимать, как сети TCP/IP адресуются и делятся на сети и подсети.

Успех TCP/IP как сетевого протокола Интернета во многом обусловлен его способностью соединять вместе сети разных размеров и системы разных типов. Эти сети произвольно делятся на три основных класса (наряду с несколькими другими), которые имеют предопределенные размеры. Каждая из них может быть разделена системными администраторами на более мелкие подсети. Маска подсети используется для разделения IP-адреса на две части. Одна часть идентифицирует хост (компьютер), другая часть идентифицирует сеть, к которой он принадлежит. Чтобы лучше понять, как работают IP-адреса и маски подсети, посмотрите на IP-адрес и посмотрите, как он организован.

IP-адреса: Сети и хосты

IP-адрес — это 32-битное число. Он однозначно идентифицирует хост (компьютер или другое устройство, например принтер или маршрутизатор) в сети TCP/IP.

IP-адреса обычно выражаются в десятичном формате с точками, состоящем из четырех чисел, разделенных точками, например 192.168.123.132. Чтобы понять, как маски подсети используются для различения хостов, сетей и подсетей, изучите IP-адрес в двоичной записи.

Например, десятичный IP-адрес с точками 192.168.123.132 — это (в двоичной записи) 32-битное число 11000000101010000111101110000100. Это число может быть трудно понять, поэтому разделите его на четыре части по восемь двоичных цифр.

Эти 8-битные секции известны как октеты. Таким образом, IP-адрес примера становится 11000000.10101000.01111011.10000100. Это число имеет немного больше смысла, поэтому в большинстве случаев преобразовывайте двоичный адрес в десятичный формат с точками (192.168.123.132). Десятичные числа, разделенные точками, представляют собой октеты, преобразованные из двоичного в десятичное представление.

Чтобы глобальная сеть TCP/IP (WAN) работала эффективно как совокупность сетей, маршрутизаторы, которые передают пакеты данных между сетями, не знают точного местоположения хоста, которому предназначен пакет информации. Маршрутизаторы знают только, членом какой сети является хост, и используют информацию, хранящуюся в их таблице маршрутизации, чтобы определить, как доставить пакет в сеть хоста назначения. После того, как пакет доставлен в сеть назначения, пакет доставляется на соответствующий хост.

Чтобы этот процесс работал, IP-адрес состоит из двух частей. Первая часть IP-адреса используется как сетевой адрес, а последняя часть — как адрес хоста. Если вы возьмете пример 192.168.123.132 и разделите его на эти две части, вы получите 192.168.123. Сеть .132 Host или 192.168.123.0 — сетевой адрес. 0.0.0.132 — адрес хоста.

Маска подсети

Второй элемент, необходимый для работы TCP/IP, — это маска подсети. Маска подсети используется протоколом TCP/IP для определения того, находится ли хост в локальной подсети или в удаленной сети.

В TCP/IP части IP-адреса, используемые в качестве адреса сети и хоста, не являются фиксированными. Если у вас нет дополнительной информации, указанные выше адреса сети и хоста определить невозможно. Эта информация предоставляется в другом 32-битном числе, называемом маской подсети. Маска подсети в этом примере — 255.255.255.0. Неясно, что означает это число, если только вы не знаете, что 255 в двоичной системе счисления равно 11111111. Итак, маска подсети 11111111.11111111.11111111.00000000.

При объединении IP-адреса и маски подсети сетевая и узловая части адреса могут быть разделены:

11000000. 10101000.01111011.10000100 — IP -адрес (192.168.123.132)
11111111111111111111.00000000 — Маска подсети (255.255.255.0)

Первые 24 -битные (номера в подножие. Последние 8 бит (количество оставшихся нулей в маске подсети) идентифицируются как адрес хоста. Он дает вам следующие адреса:

11000000.10101000.01111011.00000000 — сетевой адрес (192.168.123.0)
00000000.00000000.00000000.10000100 — адрес хоста (000.0103.000.0003.0)0015

Итак, теперь вы знаете, что для этого примера с использованием маски подсети 255.255.255.0 идентификатор сети равен 192.168.123.0, а адрес хоста — 0.0.0.132. Когда пакет приходит в подсеть 192.168.123.0 (из локальной подсети или удаленной сети) и имеет адрес назначения 192.168.123.132, ваш компьютер примет его из сети и обработает.

Почти все десятичные маски подсети преобразуются в двоичные числа, в которых все единицы слева и все нули справа. Некоторые другие распространенные маски подсети:

Десятичный Двоичный
255. 255.255.192 1111111.11111111.1111111.11000000
255.255.255.224 1111111.11111111.1111111.11100000

Internet RFC 1878 (доступен в InterNIC-Public Information UC Registration Services) описывает допустимые подсети и маски подсетей, которые можно использовать в сетях TCP/IP.

Классы сети

Интернет-адреса распределяются InterNIC, организацией, управляющей Интернетом. Эти IP-адреса делятся на классы. Наиболее распространенными из них являются классы A, B и C. Классы D и E существуют, но не используются конечными пользователями. Каждый из классов адресов имеет свою маску подсети по умолчанию. Вы можете определить класс IP-адреса, взглянув на его первый октет. Ниже приведены диапазоны интернет-адресов классов A, B и C, каждый из которых имеет пример адреса:

  • Сети класса A используют маску подсети по умолчанию 255.0.0.0 и имеют 0-127 в качестве первого октета. Адрес 10.52.36.11 является адресом класса А. Его первый октет — 10, то есть от 1 до 126 включительно.

  • Сети класса B используют маску подсети по умолчанию 255.255.0.0 и имеют 128-191 в качестве первого октета. Адрес 172.16.52.63 является адресом класса B. Его первый октет — 172, то есть от 128 до 191 включительно.

  • Сети класса C используют маску подсети по умолчанию 255.255.255.0 и имеют 192-223 в качестве их первого октета. Адрес 192.168.123.132 является адресом класса C. Его первый октет — 192, то есть от 192 до 223 включительно.

В некоторых сценариях значения маски подсети по умолчанию не соответствуют потребностям организации по одной из следующих причин:

  • Физическая топология сети
  • Количество сетей (или хостов) не соответствует ограничениям маски подсети по умолчанию.

В следующем разделе объясняется, как можно разделить сети с помощью масок подсети.

Подсети

Сеть класса A, B или C TCP/IP может быть дополнительно разделена или разделена на подсети системным администратором. Это становится необходимым, когда вы согласовываете схему логических адресов Интернета (абстрактный мир IP-адресов и подсетей) с физическими сетями, используемыми в реальном мире.

Системный администратор, которому выделен блок IP-адресов, может управлять сетями, организованными не так, чтобы эти адреса легко помещались. Например, у вас есть глобальная сеть со 150 хостами в трех сетях (в разных городах), которые соединены маршрутизатором TCP/IP. Каждая из этих трех сетей имеет 50 хостов. Вам выделена сеть класса C 192.168.123.0. (Для иллюстрации, этот адрес на самом деле из диапазона, который не выделен в Интернете.) Это означает, что вы можете использовать адреса от 192.168.123.1 до 192.168.123.254 для своих 150 хостов.

В вашем примере нельзя использовать два адреса: 192.168.123.0 и 192.168.123.255, потому что двоичные адреса с частью узла, состоящей из единиц и всех нулей, недействительны. Нулевой адрес недействителен, поскольку он используется для указания сети без указания хоста. Адрес 255 (в двоичном представлении адрес узла из всех единиц) используется для передачи сообщения каждому узлу в сети. Просто помните, что первый и последний адрес в любой сети или подсети не могут быть назначены какому-либо отдельному хосту.

Теперь вы можете назначить IP-адреса 254 хостам. Он отлично работает, если все 150 компьютеров находятся в одной сети. Однако ваши 150 компьютеров находятся в трех отдельных физических сетях. Вместо того чтобы запрашивать дополнительные блоки адресов для каждой сети, вы делите свою сеть на подсети, что позволяет использовать один блок адресов в нескольких физических сетях.

В этом случае вы делите свою сеть на четыре подсети, используя маску подсети, которая увеличивает сетевой адрес и уменьшает возможный диапазон адресов узлов. Другими словами, вы «заимствуете» некоторые биты, используемые для адреса хоста, и используете их для сетевой части адреса. Маска подсети 255.255.255.192 дает вам четыре сети по 62 хоста в каждой. Это работает, потому что в двоичной записи 255. 255.255.192 совпадает с 1111111.11111111.1111111.11000000. Первые две цифры последнего октета становятся сетевыми адресами, поэтому вы получаете дополнительные сети 00000000 (0), 01000000 (64), 10000000 (128) и 11000000 (192). (Некоторые администраторы будут использовать только две из подсетей, используя 255.255.255.192 в качестве маски подсети. Для получения дополнительной информации по этой теме см. RFC 1878.) В этих четырех сетях последние шесть двоичных цифр могут использоваться для адресов узлов.

Используя маску подсети 255.255.255.192, ваша сеть 192.168.123.0 становится четырьмя сетями 192.168.123.0, 192.168.123.64, 192.168.123.128 и 192.168.123.192. Эти четыре сети будут иметь действительные адреса хостов:

192.168.123.1-62 192.168.123.65-126 192.168.123.129-190 192.168.123.193-254

Опять же, помните, что двоичные адреса хостов со всеми единицами или всеми нулями недопустимы. , поэтому вы не можете использовать адреса с последним октетом 0, 63, 64, 127, 128, 191, 192 или 255.

Вы можете увидеть, как это работает, взглянув на два адреса хоста: 192.168.123.71 и 192.168.123.133. Если вы использовали маску подсети класса C по умолчанию 255.255.255.0, оба адреса находятся в сети 192.168.123.0. Однако если вы используете маску подсети 255.255.255.192, они находятся в разных сетях; 192.168.123.71 находится в сети 192.168.123.64, 192.168.123.133 находится в сети 192.168.123.128.

Шлюзы по умолчанию

Если компьютеру TCP/IP необходимо установить связь с хостом в другой сети, он обычно осуществляет связь через устройство, называемое маршрутизатором. В терминах TCP/IP маршрутизатор, указанный на узле, который связывает подсеть узла с другими сетями, называется шлюзом по умолчанию. В этом разделе объясняется, как протокол TCP/IP определяет, следует ли отправлять пакеты на шлюз по умолчанию для достижения другого компьютера или устройства в сети.

Когда хост пытается связаться с другим устройством с помощью TCP/IP, он выполняет процесс сравнения, используя определенную маску подсети и IP-адрес назначения, с маской подсети и собственным IP-адресом. Результат этого сравнения сообщает компьютеру, является ли пункт назначения локальным хостом или удаленным хостом.

Если в результате этого процесса будет определено, что пунктом назначения является локальный узел, компьютер отправит пакет в локальную подсеть. Если в результате сравнения будет определено, что пунктом назначения является удаленный узел, то компьютер перенаправит пакет на шлюз по умолчанию, указанный в его свойствах TCP/IP. В этом случае ответственность за пересылку пакета в правильную подсеть лежит на маршрутизаторе.

Устранение неполадок

Сетевые проблемы TCP/IP часто вызваны неправильной настройкой трех основных записей в свойствах TCP/IP компьютера. Понимая, как ошибки в конфигурации TCP/IP влияют на сетевые операции, вы можете решить многие распространенные проблемы TCP/IP.

Неверная маска подсети: если сеть использует маску подсети, отличную от маски по умолчанию для своего класса адресов, а клиент по-прежнему настроен с маской подсети по умолчанию для класса адресов, связь с некоторыми близлежащими сетями невозможна, но не с удаленными. те. Например, если вы создаете четыре подсети (как в примере с подсетями), но используете неправильную маску подсети 255.255.255.0 в конфигурации TCP/IP, хосты не смогут определить, что некоторые компьютеры находятся в разных подсетях. их собственный. В этом случае пакеты, предназначенные для узлов в разных физических сетях, которые являются частью одного и того же адреса класса C, не будут отправляться на шлюз по умолчанию для доставки. Распространенным симптомом этой проблемы является то, что компьютер может взаимодействовать с хостами, находящимися в его локальной сети, и может взаимодействовать со всеми удаленными сетями, кроме тех сетей, которые находятся поблизости и имеют одинаковый адрес класса A, B или C. Чтобы решить эту проблему, просто введите правильную маску подсети в конфигурации TCP/IP для этого хоста.

Неверный IP-адрес: Если вы поместите компьютеры с IP-адресами, которые должны находиться в разных подсетях в локальной сети друг с другом, они не смогут обмениваться данными. Они попытаются отправить пакеты друг другу через маршрутизатор, который не может правильно их переслать. Симптомом этой проблемы является компьютер, который может взаимодействовать с хостами в удаленных сетях, но не может взаимодействовать с некоторыми или всеми компьютерами в своей локальной сети. Чтобы устранить эту проблему, убедитесь, что все компьютеры в одной физической сети имеют IP-адреса в одной и той же IP-подсети. Если у вас закончились IP-адреса в одном сегменте сети, есть решения, которые выходят за рамки этой статьи.

Неправильный шлюз по умолчанию: компьютер, для которого настроен неправильный шлюз по умолчанию, может обмениваться данными с хостами в своем собственном сегменте сети. Но он не сможет связаться с хостами в некоторых или во всех удаленных сетях. Хост может взаимодействовать с некоторыми удаленными сетями, но не с другими, если выполняются следующие условия:

  • Одна физическая сеть имеет более одного маршрутизатора.
  • В качестве шлюза по умолчанию настроен неправильный маршрутизатор.

Эта проблема распространена, если в организации есть маршрутизатор для внутренней сети TCP/IP и еще один маршрутизатор, подключенный к Интернету.

Ссылки

Два популярных справочника по TCP/IP:

  • «TCP/IP Illustrated, Volume 1: The Protocols», Richard Stevens, Addison Wesley, 1994
  • «Взаимодействие с TCP/IP, том 1: принципы, протоколы и архитектура», Дуглас Э. Комер, Прентис Холл, 1995 г.

Рекомендуется, чтобы системный администратор, отвечающий за сети TCP/IP, имел хотя бы одну из этих ссылок.

Глоссарий

  • Широковещательный адрес — IP-адрес с частью хоста, состоящей из единиц.

  • Хост — компьютер или другое устройство в сети TCP/IP.

  • Интернет. Глобальная совокупность сетей, соединенных вместе и имеющих общий диапазон IP-адресов.

  • InterNIC — Организация, ответственная за администрирование IP-адресов в Интернете.

  • IP — сетевой протокол, используемый для отправки сетевых пакетов по сети TCP/IP или через Интернет.

  • IP-адрес — уникальный 32-битный адрес хоста в сети TCP/IP или межсетевом соединении.

  • Сеть. В этой статье термин сеть используется двумя способами. Один представляет собой группу компьютеров в одном физическом сегменте сети. Другой — это диапазон сетевых IP-адресов, выделенный системным администратором.

  • Сетевой адрес — IP-адрес с частью хоста, состоящей из нулей.

  • Октет — 8-битное число, 4 из которых составляют 32-битный IP-адрес. Они имеют диапазон от 00000000 до 11111111, что соответствует десятичным значениям от 0 до 255.

  • Пакет — единица данных, передаваемая по сети TCP/IP или глобальной сети.

  • RFC (запрос комментариев) — документ, используемый для определения стандартов в Интернете.

  • Маршрутизатор — устройство, передающее сетевой трафик между различными IP-сетями.

  • Маска подсети — 32-битное число, используемое для различения сетевой и хостовой частей IP-адреса.

  • Подсеть или подсеть — меньшая сеть, созданная путем разделения большей сети на равные части.

  • TCP/IP — в широком смысле набор протоколов, стандартов и утилит, широко используемых в Интернете и крупных сетях.

  • Глобальная сеть (WAN) — большая сеть, представляющая собой совокупность более мелких сетей, разделенных маршрутизаторами. Интернет является примером большой глобальной сети.

Что такое IP-адрес? Определение + как его найти

Автор Дэн Рафтер для NortonLifeLock

25 июля 2022 г.

Наши устройства, подключенные к Интернету, имеют уникальные идентификаторы — адреса интернет-протокола, обычно называемые IP-адресами.

IP-адрес может немного рассказать о вас, а именно о вашей геолокации.

Если вы задаетесь вопросом «Как узнать свой IP-адрес?» вот основы того, что делают IP-адреса и как вы можете найти свой собственный.

Что такое IP-адрес?



Итак, что такое IP-адрес? По сути, IP-адрес – это строка цифр, назначенная устройству, подключенному к Интернету. Думайте об этом как о адресе дома. Ваша компьютерная сеть использует IP-адрес для связи с другими компьютерами, веб-сайтами и всеми частями киберпространства.

По сути, IP-адреса — это то, как компьютеры в Интернете узнают друг друга. Ваш интернет-провайдер (ISP) назначает IP-адреса вашим устройствам, подключенным к Интернету, и каждый IP-адрес уникален. Учитывая, что у каждого устройства, подключенного к Интернету, есть IP-адрес, существуют миллиарды IP-адресов.

Каждое устройство, которое может подключаться к Интернету, является участником Всемирной паутины — компьютеры, ноутбуки, планшеты, мобильные телефоны, маршрутизаторы и т. д. — и все они имеют IP-адрес. Веб-сайты и компьютерные сети требуют этой формы идентификации, чтобы вы могли взаимодействовать с ними.

Важно понимать, как найти свой IP-адрес и как это работает. Но также важно понимать назначение IP-адресов и их значение.

Зачем вам IP-адрес?

IP-адрес можно считать цифровым адресом для ваших устройств, подключенных к Интернету, поскольку он показывает вашу геолокацию, чтобы помочь провайдерам доставлять контент, который имеет отношение к вам.

Пример? Благодаря вашему IP-адресу вы увидите всплывающие окна местных ресторанов при поиске «суши-рестораны».

Как узнать свой IP-адрес?

Вы можете узнать свой IP-адрес, выполнив поиск Google по запросу «Какой у меня IP-адрес?» Как только вы это сделаете, Интернет отправит вам ваш IP-адрес. Интернет знает ваш IP-адрес, потому что он назначен вашему устройству и необходим для работы в Интернете.

Однако ваш IP-адрес меняется каждый раз, когда вы подключаетесь к другой сети Wi-Fi или другому маршрутизатору. Онлайн-пользователи даже не заметят разницы, и, как правило, им это не нужно — так же, как им не обязательно знать, как читать IP-адрес.

Скорее, онлайн-пользователи должны знать, какую информацию раскрывает их IP-адрес.

Какую информацию раскрывает мой IP-адрес?


 

IP-адреса раскрывают ваше местоположение, но не точное местоположение, как домашний адрес. IP-адреса также никогда не раскрывают ваше имя, номер телефона или другую точную личную информацию. Вместо этого IP-адреса могут указывать город, почтовый индекс или код области, откуда вы подключаетесь к Интернету в данный момент, поэтому IP-адреса меняются каждый раз, когда вы подключаетесь из нового места или используете новый маршрутизатор.

И, как правило, раскрывается IP-адрес вашего маршрутизатора, а не IP-адрес ваших подключенных к Интернету устройств, таких как компьютер, планшет или мобильный телефон, которые взаимодействуют с маршрутизатором для подключения к Интернету. Конечно, эти подключенные к Интернету устройства имеют общий IP-адрес с вашим маршрутизатором, но ваш маршрутизатор использует свой собственный IP-адрес, чтобы предоставить вашему устройству доступ во Всемирную паутину.

Именно по этой причине ваш IP-адрес почти всегда раскрывает геолокацию ближайших серверов вашего интернет-провайдера, а вовсе не ваше физическое местоположение, а ваш IP-адрес также раскрывает имя вашего интернет-провайдера.

  • О чем говорит IP-адрес?  В большинстве случаев IP-адрес сообщает вам город, почтовый индекс или региональный код вашего интернет-провайдера, а также имя вашего интернет-провайдера.
  • О чем может рассказать IP-адрес?  В какой-то степени ваше физическое местоположение, а также имя вашего интернет-провайдера.
  • Могут ли IP-адреса раскрывать вашу личность?  Нет, не прямо. Однако другие могут собрать воедино части вашей личности, используя ваш IP-адрес и отслеживая ваши действия в Интернете 9.0004

Могут ли другие найти мой IP-адрес?



Другим не так просто узнать ваш IP-адрес. Они не могут просто выполнить поиск в Google по запросу «Какой у [вставьте имя] IP-адрес?» Но это также не так сложно, как вы думаете, учитывая, что мы оставляем наши цифровые следы и, в свою очередь, IP-адреса с каждым кликом, который мы делаем в Интернете.

Помните, что IP-адреса необходимы для входа на любой веб-сайт и веб-страницу на нем. Каждый раз, когда вы нажимаете что-то в Интернете, это похоже на подпись в гостевой книге, где ваш IP-адрес выступает в качестве подписи, которую вы оставляете. Сюда входят сайты социальных сетей, интернет-форумы, чаты и блоги, которые вы комментируете. Все эти платформы могут просматривать ваш IP-адрес.

Кроме того, киберпреступники могут узнать ваш IP-адрес, взломав вашу домашнюю сеть или разместив ошибку в сообщении электронной почты HTML.

Для более простого подхода к поиску вашего IP-адреса другие могут просто взять ваше устройство и ввести в Google «какой у меня IP-адрес» или проверить заголовок адреса электронной почты. Существуют также службы поиска IP-адресов, с помощью которых пользователи могут просто скопировать и вставить IP-адрес в строку поиска и узнать геолокацию человека.

Органы власти, в том числе правоохранительные органы или специалисты по расследованию мошенничества, также могут использовать повестки в суд, чтобы связаться с вашим интернет-провайдером и получить ваш IP-адрес.

Но зачем другим людям знать ваш IP-адрес и что они будут с ним делать?

Опасно ли людям знать мой IP-адрес?



Поскольку IP-адрес напрямую не раскрывает вашу личную информацию или конфиденциальные данные, знать его, как правило, не опасно, но все зависит от того, кто пытается получить к нему доступ.

Рассмотрите следующие стороны, которым может быть интересен ваш IP-адрес и почему:

  • Власти для сбора информации о незаконной деятельности
  • Работодателям , ​​чтобы понять, где вы проводите время в Интернете на работе
  • Рекламодатели  , ​​чтобы предлагать вам релевантные продукты и услуги
  • Черный список баз данных для блокировки доступа спамеров
  • Розничные продавцы  чтобы сверить ваше местоположение с почтовым адресом вашего способа оплаты
  • Чаты  для блокировки неуместных пользователей
  • Подписка  услуги для блокировки доступа пользователей к контенту, недоступному в их регионе
  • Хакеры для установки вредоносного ПО на ваши устройства
  • Киберпреступники  чтобы подвергнуть вас риску атак типа «отказ в обслуживании»
  • Преступники  которые, если им уже известна ваша личная информация, могут позвонить вашему интернет-провайдеру и совершить вишинг-атаку
  • Вы, , ​​можете даже использовать IP-адрес, чтобы подтвердить, проживает ли онлайн-друг или виртуальный любовный интерес там, где, по их словам, они живут

Когда дело доходит до того, что другие пытаются найти ваш IP-адрес, у некоторых могут быть злонамеренные намерения, например отследить вас. Однако другие могут следить за вами, например, ваш банк должен подтвердить, что именно вы отправили запрос на перевод.

Тот факт, что кто-то знает ваш IP-адрес, не обязательно означает, что он окажется на вашем пороге. Тем не менее, вы можете принять меры для защиты своего IP-адреса.

Как защитить свой IP-адрес?

Самый простой способ защитить свой IP-адрес — использовать виртуальную частную сеть (VPN). Она скрывает вашу активность в Интернете с помощью шифрования и шифрования данных, которые вы отправляете во время поиска в Интернете, чтобы хакеры могли их расшифровать. Он также полностью меняет ваш IP-адрес, определяя ваше местоположение за сотни, а то и тысячи миль от того места, где вы выходите в Интернет.

Итог: важно знать, что такое IP-адрес

Теперь, когда вы знаете ответ на вопрос «Как узнать свой IP-адрес?» вы можете лучше предпринять шаги, необходимые для защиты вашего IP-адреса в Интернете. Полезно знать, что раскрывает IP-адрес и как скрыть свой IP-адрес, если хотите.

В конце концов, информирование – лучший способ защитить нашу конфиденциальность в Интернете.

Технология Norton заблокировала 142 миллиона угроз в день.

Norton™ 360 обеспечивает постоянную защиту ваших ПК, компьютеров Mac, смартфонов и планшетов от программ-вымогателей, вирусов, шпионских программ, вредоносных программ и других онлайн-угроз.

Попробуйте Norton 360. Почта, банковские операции и покупки с вашего устройства. Мы сохраним его в безопасности.

Подробнее

Узнать больше

Узнать больше

Узнать больше


Примечание редактора: наши статьи содержат образовательную информацию для вас. Предложения NortonLifeLock могут не охватывать или защищать от всех видов преступлений, мошенничества или угроз, о которых мы пишем. Наша цель — повысить осведомленность о кибербезопасности. Ознакомьтесь с полным текстом Условий во время регистрации или настройки. Помните, что никто не может предотвратить все случаи кражи личных данных или киберпреступлений, и что LifeLock не отслеживает все транзакции на всех предприятиях.

Авторские права © NortonLifeLock Inc., 2023. Все права защищены. NortonLifeLock, логотип NortonLifeLock, логотип Checkmark, Norton, LifeLock и логотип LockMan являются товарными знаками или зарегистрированными товарными знаками NortonLifeLock Inc. или ее дочерних компаний в США и других странах. Firefox является товарным знаком Mozilla Foundation. Android, Google Chrome, Google Play и логотип Google Play являются товарными знаками Google, LLC. Mac, iPhone, iPad, Apple и логотип Apple являются товарными знаками Apple Inc., зарегистрированными в США и других странах. App Store является знаком обслуживания Apple Inc. Alexa и все соответствующие логотипы являются товарными знаками Amazon.com, Inc. или ее дочерних компаний. Microsoft и логотип Window являются товарными знаками Microsoft Corporation в США и других странах. Робот Android воспроизводится или модифицируется на основе работы, созданной и распространенной Google, и используется в соответствии с условиями, описанными в лицензии Creative Commons 3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *